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1 COMPLIANT KINEMATICS
Kinematic mesh interpenetrations commonly occur during anima-
tion sequences. Although meshes might not intersect on integer
frames, interpenetrations can arise due to interpolation between
keyframes and pose significant challenges in terms of resolution
time and feasibility within tight production schedules.

To address this challenge in Loki [Lesser et al. 2022] we introduce
a semi-automatic resolution strategy for problematic animations.
Our approach empowers artists to designate intersecting-prone
regions as compliant. Underlying our approach is the creation of
compliant kinematic surfaces that adhere closely to their kine-
matic guidance; however, upon contact with other surfaces, these
compliant vertices recede to form gaps. Conceptually, this method
resembles constraining a piece of cloth to a guiding kinematic mesh
and allowing the collision solver to dynamically generate necessary
separations dynamically. However, our implementation streamlines
user interaction by eliminating explicit constraint configuration
and optimizing solver performance for computational efficiency.

For elastodynamic simulation, we utilize backward Euler time
stepping with optimization integration. The update from timestep
𝑛 to 𝑛 + 1, excluding external impulses, is governed by

𝐸 (v, x) =
∫

𝜌

2


v − v𝑛



2 𝑑𝑉 + Ψ(v, x),

x = x𝑛 + ℎv,
v𝑛+1 = argmin

v
𝐸 (v, x), 𝑠 .𝑡 . 𝐶 (v, x) = 0,

(1)

where 𝜌 represents material density,𝑉 is volume, v and x denote the
vertex velocities and positions, andℎ is the timestep. Ψ encapsulates
mechanical energy potentials (including conservative forces like
gravity and hyperelastic materials, and user-defined constraints),
and 𝐶 (v, x) enforces contact projection constraints.
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Instead of explicitly enforcing kinematic guidance with a force
or constraint for compliant kinematic vertices, we opt to omit Ψ
and modify the momentum term directly. Our goal is to encourage
these vertices towards the kinematic guidance in a quasistatic man-
ner. We achieve this by setting v𝑛 = 0, effectively removing their
momentum, and directing their velocities toward “goals” defined as
v = (x𝑔 − x)/ℎ, where x𝑔 is the vertex guidance position. Putting it
together, for compliant kinematic vertices, Equation 1 simplifies to

𝐸𝑐𝑘 (v, x) =
∫

𝜌
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2 𝑑𝑉

=

∫
𝜌
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x𝑔 − x



2 𝑑𝑉 ,
x = x𝑛 + ℎv.

(2)

Discretizing this into vertices yields

𝐸𝑐𝑘 (v, x) =
𝜌

2ℎ2
Σ𝑖



x𝑔
𝑖
− x𝑖



2𝑉𝑖 ,
x𝑖 = x𝑛𝑖 + ℎv𝑖 ,

(3)

where 𝑖 is the vertex index, and 𝜌

ℎ2𝑉𝑖 is conveniently the stiffness of
an imaginary spring pulling each vertex towards its goal position
x𝑔
𝑖
.
The final system incorporating elasticity, contact, and compliant

kinematics becomes
[v, v̂]𝑛+1 = arg min

[v,v̂]
𝐸 (v, x) + 𝐸𝑐𝑘 (v̂),

𝑠 .𝑡 . 𝐶 ( [v, v̂], [x, x̂]) = 0,
(4)

where v̂ and x̂ denote the velocities and positions on the new
vertices introduced into the system by the compliant kinematic
objects, and [·] is vector concatenation.

From the mathematical derivation, our method is functionally
equivalent to treating compliant kinematic vertices as dynamic
vertices and pulling them towards their kinematic guidance using
explicit spring constraints. However, our approach offers several
key advantages. Primarily, it significantly simplifies the user inter-
action with the solver. When an artist tries to alleviate a pinching
region in an animation, they simply paint a non-zero stiffness map
onto the mesh; all subsequent setup happens automatically behind
the scenes. This stiffness map directly corresponds to the “stiffness
density” 𝜌

ℎ2 in Equation 3, intuitively resembling a paintable spring
stiffnesses. Notably, we incorporate the 1

ℎ2 factor into the painted
values to ensure timestep independence of the effective stiffness;
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Figure 1: Comparison of strain limiting as a post-collision step
(left) and constitutive strain limiting solved together with collision
(right). ©Wētā FX.

using different numbers of substeps should yield consistent results.
Furthermore, the modified formula ensures that these newly intro-
duced compliant vertices serve solely for contact resolution and
lack momentum, coupling, or other dynamic effects. Finally, within
the system matrix layout, these compliant vertices cluster as diago-
nal sub-blocks disconnected from the rest of the matrix. This allows
us to employ a fast preconditioner specifically designed for these di-
agonal blocks during the solve process, minimizing computational
overhead despite introducing additional degrees of freedom.

2 CONSTITUTIVE STRAIN LIMITING
Strain limiting, often modeled as an edge shrinking step occurring
post-collision in FEM simulations, can invalidate collision resolu-
tion and lead to penetrations. This issue arises because the collision
pass is unaware of the edge shrinking process, which itself does not
account for collision constraints – a common issue in projective
solvers like Position-Based Dynamics. To address this problem, one
could iterate between these passes until convergence or unify the
constraints into a single solvable system.

Inspired by the Constitutive Strain Limiting from Codimensional
Incremental Potential Contact [Li et al. 2021], Loki adopts the latter
approach, combining collisions and strain limits within a unified
representation.

Examining more closely on the collision constraint 𝐶 (v, x) from
Equation 1, contacts typically involves evaluating the gap function
𝜙 and its time derivative ¤𝜙 . The non-penetrating condition can
be formulated as a non-negative gap at the end of the timestep
with first-order Taylor approximation, 𝜙 ≈ 𝜙𝑛 + ℎ ¤𝜙 ≥ 0. Given
that velocity is linearized within each timestep, we can define an
intermediate vector u at the contact points as

u =
𝜙𝑛

ℎ
n + ¤𝝓,

=
𝜙𝑛

ℎ
n + Jv,

(5)

where n is the collision normal, and J is the mapping from ver-
tex velocities to contact velocities, often refered to as constraint
Jacobian. The final collision constraint can then be formulated as

u𝑁 ≥ 0, (6)

for simple friction-less contacts; or
0 ≤ u𝑁 ⊥ r𝑁 ≥ 0
r ∈ 𝐾𝜇

r𝑇 = −𝜇r𝑁
u𝑇
∥u𝑇 ∥

, if u𝑇 ≠ 0,
(7)

for contacts with Coulomb friction, where 𝑁 and 𝑇 denote the
vector components parallel and tangential to the collision normal
n, 𝜇 is the friction coefficient, 𝐾𝜇 denotes the friction cone of aper-
ture 𝜇, r is the contact force at collision points, and ⊥ represents
the complementarity condition. See [Daviet 2020] for more details
about the frictional contacts.

A similar formulation is applicable for assessing elongation of
mesh edges. To determine the equivalence of vector u along an
edge, we use

ustretch = J𝑒v +
𝑙𝑛𝑒

ℎ
e, (8)

where J𝑒 is the differential stencil of the edge endpoints, 𝑙𝑛𝑒 rep-
resents the edge length at the beginning of the timestep, and e
denotes the edge direction. To enforce a maximum edge elongation
𝜀𝑒 , the constraint becomes

ℎustretch · e = ℎJ𝑒v · e + 𝑙𝑛𝑒 ≤ (1 + 𝜀𝑒 )𝑙0𝑒 , (9)
where 𝑙0𝑒 is the rest length of the edge. This constraint can seamlessly
be integrated into a projective solver alongside contacts for coherent
solutions, or adapted to fit complementarity problem solvers as

ℎustretch · e ≤ (1 + 𝜀𝑒 )𝑙0𝑒 ⊥ r𝑒 ≥ 0. (10)
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