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Abstract
This paper addresses the longstanding challenge of soft body dynamics with frictional contact through a novel combination
of Projective Dynamics for elasticity simulation and Alternating Direction Method of Multipliers for frictional contact
handling. The approach utilizes parallel local strain projection for deformable bodies and nonlinear Projected Gauss-Seidel
for contact with Coulomb friction, consolidated by a pre-factorized global strain propagation step. Integration of contact
stabilization,Matchstick anisotropic friction, andRayleigh damping enhances reliability and usability. Effectiveness, accuracy,
and computational efficiency are demonstrated in challenging cases, including multi-layer and persistent contacts. With a
CPU-based parallel implementation, our method achieves visually plausible and stable simulation results at an interactive
framerate in moderate-scale scenes, showcasing its applicability across various graphics applications.

Keywords Physics-based animation · Elastic Dynamics · Frictional Contact handling

1 Introduction

The significance of physically based soft body simulation
in enhancing realism within applications such as video
games, virtual surgery, and fashion design cannot be over-
stated. Despite its pivotal role, challenges remain in attaining
the delicate balance between visual plausibility and com-
putational efficiency, particularly in scenarios demanding
accurate modeling of frictional contacts.

Numerousmethods in computer graphics, such as Position
Based Dynamics (PBD) [15, 28, 30], effectively handle soft
body dynamics and contacts. However, challenges like slow
convergence and jittering artifacts persist, especially in large-
scale scenarios [10]. Alternative methods, e.g., the penalty
force [26, 37] or the hard constraint [33, 42], struggle to meet
both simulation quality and computational efficiency require-
ments, particularly in scenarios involving frictional contacts.

B Peng Yu
yupeng@buaa.edu.cn

B Xiao Zhai
zhaixiao43@gmail.com

B Junjun Pan
pan_junjun@buaa.edu.cn

1 State Key Laboratory of Virtual Reality Technology and
Systems, School of Computer Science and Engineering,
Beihang University, Beijing, China

2 Weta FX, Wellington, New Zealand

In the domain of elastic dynamics, ProjectiveDynamics (PD)
[6] stands out for its efficiency and quality, leveraging pre-
factorization for the global solve upfront. Meanwhile, recent
advancements addressing frictional collisions [10, 11, 20,
39] use the Alternating Direction Method of Multipliers
(ADMM) to decouple contact dynamics and elasticity, intro-
ducing a robust iteration framework.

The concept of integrating PD for simulating elasticity and
ADMM for managing frictional contacts, with the objective
of achieving both computational speed and visually plausible
outcomes, is intriguing. Although it has been demonstrated
that PD andADMMcan be combined for general deformable
simulations [32], the extension to frictional contacts remains
unexplored. Motivated by these considerations, this paper
embarks on an exploration of this novel combination. Specif-
ically, the elasticity is resolved using parallel local strain
projection, while frictional contacts are addressed through
the Projected Gauss-Seidel (PGS) method. A global strain
propagation step, akin to the pre-factorized global step in PD,
consolidates the contributions from these individual steps.

Furthermore,we enhance the utility of the existing simula-
tion framework by incorporating anisotropic friction through
the Matchstick Model. This augmentation is complemented
by the inclusion of contact stabilization and Rayleigh damp-
ing, collectively contributing to an overall improvement in
realism and reliability. Our method is inherently paralleliz-
able and typically achieves visually plausible, stable, and
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accurate resultswith only a fewADMMandPGS iterations at
each timestep. This makes it well-suited for various applica-
tions, especially in interactive scenarios with moderate-scale
scenes (around 20K DoFs).

Our contributions can be summarized as follows:

– Introducing a novel decoupled scheme for soft body
dynamics with frictional contacts, combining the effi-
cient elasticity solver from PD with the robust frictional
contacts handling from ADMM.

– Integrating Matchstick anisotropic friction, contact sta-
bilization, and Rayleigh elastic damping to enhance both
reliability and realism.

– Demonstrating the effectiveness, accuracy, and compu-
tational efficiency of our solver, showcasing interac-
tive framerates in moderate-scale scenes. Notably, our
approach excels even in scenarios involving complex and
persistent contacts.

2 Related works

Ourwork is built in the framework of a local–global solver for
elastic dynamics and employs the operator splitting contact
handling method within the ADMM scheme. In this section,
we provide a concise overview of both these topics, focusing
on methods designed for interactive applications.

2.1 Elastic deformation and frictional contact
modeling

Drawing from works like [2, 10, 26], methods for soft body
dynamics and contacts are broadly categorized into three
types: primal-based, which treats both elasticity and contacts
as energy optimization problems, dual-based, which treats
elasticity and contacts as constraints, and hybrid approaches,
which formulates a constrained optimization problem and
treats frictional contacts as hard constraints.

2.1.1 Primal-basedmethods

Pioneeredby [40], primal-basedmethods initially use explicit
time integration to solve elasticity. Later developments, such
as the backward Euler time integrator introduced by [4],
demonstrated the versatility of this approach by utilizing
penalty forces and velocity-level stiff penalties to handle col-
lisions. For greater stability, [16] redefined backward Euler
as an energy minimization problem, and [26] employed a
penalty-based energy tomodel collision responses. For inter-
active simulations, numerous first-order descent methods
have been introduced due to their parallelizability, exploiting
the capabilities of modern GPUs [26, 43]. However, these
methods face convergence challenges in extreme scenar-

ios [23], often resulting in penetration and slipping artifacts.
In contrast, [38] opted for the projected Newton method,
aligning it with a second-order descent method. Despite the
improved stability, it also comes with computational over-
head.Notably, [23] introduced Incremental Potential Contact
(IPC), achieving a penetration-free projected Newton solver
with accurate frictional contacts but demanding substantial
computation.

2.1.2 Dual-based methods

Deformable dynamics can be effectivelymodeled by treating
each finite element as a soft constraint. Initially explored for
interactive applications by [36], subsequent developments,
such as [41], introduced strain limiting and geometric stiff-
ness. PBD, pioneered by [30] and refined by XPBD [28],
employs a fast Gauss-Seidel method for iterative constraint
solving. Collision methods like the unilateral constraints,
the vertex-pushing technique [29] and the box Linear Com-
plementarity Problem (LCP)-based frictional contact solver
integration [15] demonstrate its versatility. [12, 31] intro-
duced a frictional contact projectionmethod rigid body PBD.
However, these PBD-based methods exhibit issues with
slow strain propagation [10], and their effectiveness heavily
depends on iteration counts, making them less efficient when
dealing with a relatively large number of positional degrees
of freedom (DoFs). Additionally, artificial energy problems
in contact scenarios [18] and unwanted impacts due to the
convexification of friction cones [15] pose challenges for
methods following the PBD paradigm.

2.1.3 Hybrid methods

Initially proposed by [3], hybrid methods leverage hard
constraints to address contacts in deformable body dynam-
ics, ensuring compliance with Signorini’s condition and
Coulomb’s law. Later, [2] combined the hard constraints
and the FEM elastic energyare as a complementarity prob-
lem. The nonlinear complementarity problem (NCP) can be
effectively tackled using the Newton’s method [5] or its
conjugate-residual-based variant [27]. While accurate and
featuring second-order convergence, these methods exhibit
notable computation overhead and convergence challenges
when the ratio of number of contact to DoFs is high [10].
Linearizing the NCP into the mixed linear complementar-
ity problem (MLCP) [42], one can further employ the Shur
complement andDelassus operator to convertMLCP to LCP.
However, the LCP-based formulation with operator splitting,
popular for simulating rigid bodies [2], proves inefficient for
deformable bodies due to the dense nature of the Delassus
operator and the challenges in its construction [10]. Iterative
Constraint Anticipation (ICA) [33] solves the issue by using
nested iterations. However, the demand on small time steps
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and many collision detection passes makes it less suitable for
interactive applications.

2.2 ADMM for deformable simulation with contact

ADMM originates from an Augmented Lagrangian Mul-
tiplier (ALM) and is designed to address optimization
problems with constraints [7]. Their methods were reported
to perform well in many fields, such as 3D reconstruction
[1] and image restoration [8]. In recent years, ADMM has
gained prominence in computer graphics [10, 11, 14, 32, 35,
37]. By judiciously decomposing the original problem into
sub-problems and introducing auxiliary variables with lin-
ear constraints, ADMM yields a solver with a convergence
rate of O(1/k) through iterative local–global steps, where k
represents the iteration count.

In their work, [32] leverage ADMM to expand the
local–global elastic solver PD, accommodating generalized
hyperelastic materials. This method comprises an indepen-
dent local strain projection step and a global propagation
step, facilitating matrix prefactorization and rapid forward
solving. However, this approach may introduce jittering arti-
facts when dealing with contacts, a challenge addressed later
by [25] in cloth simulation. Their solution involves reformu-
lating PD at the velocity level and handling contacts with
Coulomb friction.

In a recent advancement, Daviet [10] presented an
ADMM-based technique that separates the PGS frictional
contact solver from FEM elastic propagation. This method
has been applied to real-time virtual hair editing, employ-
ing a Jacobi-style contact solver on GPU [11]. By directly
addressing primal variables during contact resolution, this
approach achieves a faster convergence rate and delivers
visually compelling resultswithin constrained computational
time. Importantly, the contact solver in our method aligns
with [10].

Contact resolution can be efficiently parallelized through
suitable splitting methods. [39] disentangles the comple-
mentarity problem based on the associated friction law,
separating it into an independent contact force projection
step and a global constraint-based system-solving step. Sub-
sequently, [9] extends this approach to a unified rigid body
simulator. However, the drawback lies in the computational
overhead incurred while solving a global system that under-
goes changes at eachADMMiteration,making it less suitable
for interactive applications. In an alternative approach, [20]
proposes a double splitting scheme that breaks down FEM
into numerous small subsystems, resulting in a system with
many small, independent tasks. Nonetheless, this method
requires a relatively small timestep and in-time factorization
for each subsystem.

3 Background

This section provides a brief overview of constraint-based
dynamics and ADMM to make the paper self-contained.

3.1 Constraint-based dynamics

Consider a soft body system with vertex positions x, veloci-
ties v and displacement χ . The equation of motion, account-
ing for both elastic forces and contact, is expressed as

Mv̇ + Kχ = fext + fc, (1)

whereM is the diagonal lump mass,K is the elastic stiffness
matrix, and fext and fc are the external force and contact
force, respectively. Employing finite difference time inte-
gration over timestep h, as dicussed in Andrews et al. [2],
the velocity can be updated through a system of the form
Av = b + fc, where A = M/h + hK. The remaining terms
are collectively represented by b.

To express the relative velocity of contact points, we intro-
duce the Jacobian matrix J as u = Jv, where u is the relative
velocity, and the contact force γ is reported to nodes by
fc = JT γ . Combining these equations and using the Shur
Complement technique yields a reduced equation as

u = JA−1b + JA−1JT γ ,

s.t .

{
0 ≤ uN ⊥ γ N ≥ 0
γ ∈ Kμ, γ T = −μγ N

uT‖uT ‖ if uT �= 0,
(2)

where μ is the friction coefficient, Kμ denotes the Coulomb
friction cone {∥∥γ T

∥∥ ≤ μγ N , γ ∈ R3}, and the N and
T subscripts denotes the normal and tangential directions,
respectively. Signorini’s law is employed as a comple-
mentarity problem to define correct contact behavior, and
Coulomb’s law is integrated to delineate the friction response.

To simulate elastic dynamics with frictional contacts, we
could solve Eq. (2) with unknown variables u and γ . Con-
ventional methods to solve this complementarity problem,
such as PGS, often require an expensive evaluation ofA−1 at
each iteration. Our proposed method is motivated to address
the computational challenges associated with both comput-
ing A−1 and solving a system containing the dense matrix
JA−1JT using the ADMM approach.

3.2 ADMM

Derived from the Augmented Lagrangian Method (ALM),
ADMM is designed for solving convex optimization prob-
lems of the form

min
x,z

f (x) + g(z), s.t . Ax + Bz + c = 0, (3)
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Algorithm 1: Method Overview
Data: Mass, timestep h, ADMM parameters , physics parameters
Input: Simulation ready mesh
Output: Vertices displacement sequence from t0 to tn

/* Section. 4.1, 4.2 */
1 Build and prefactorize the sparse system matrix ;
2 for from t ← t0 to tn do
3 foreach element do Elastic strain projection /* Section.

5.1, 6.1 */
4 Frictional contact projection with optional stabilization;

/* Section. 4.2 */
5 Global strain propagation with Rayleigh damping;
6 end

where x ∈ Rn1 and z ∈ Rn2 are primal optimization vari-
ables, A ∈ Rm×n1 , B ∈ Rm×n2 and c ∈ Rm constitute the
constraint, and f and g are convex functions, not necessarily
smooth [7]. Introducing dual variables λ ∈ Rm , the aug-
mented Lagrangian is expressed as

L(x, z,λ) = f (x) + g(z) + ρ

2
‖Ax + Bz + c + λ‖2 + k.

(4)

Here, we employ the scaled form of ADMM [7] as the
constant term k does not affect the optimum. The iteration
scheme is as follows. For iteration l + 1,

xl+1 := argmin
x

L(x, zl ,λl),

zl+1 := argmin
z

L(xl+1, z,λl),

λl+1 := λl + ρ(Axl+1 + Bzl+1 + c).

(5)

ADMMuses aGauss-Seidel type update to solveEq.3 and
is nearly as robust asALMbutwith the advantages of variable
splitting and problem decomposition. It is noteworthy that in
practice, ADMM may still converge for some non-convex
objective functions [7, 44].

4 Method overview
This section provides an overview of our simulation frame-
work, outlined in Algorithm 1. Aligned with the ADMM
iterative scheme, each optimization iteration is decomposed
into a series of steps. This and the next section will elaborate
on the solution process within each step.

4.1 Problem decomposition

The implicit Euler time integration of soft body dynamics
can be formulated as the optimization problem

xt+1 = argmin
x

1

2h2

∥∥∥M 1
2 (x − x)

∥∥∥2 +U (x) + F(x, v), (6)

where x = xt + hvt + h2M−1fext is the predicted position
with fext being the external force, U (x) is the hyperelastic
energy and F(x, v) is the potential energy caused by contacts.

To decouple the positionDoFs from the local elastic strain,
we introduce an auxiliary variable z ∈ Rne×3, where ne
denotes the number of elastic elements, and equality con-
straint zi = Dix for the i-th element. Here, Di represents
the vertex weight matrix for each Finite Element, and these
matrices can be concatenated into D = [DT

1 ,DT
2 , ...DT

ne ]T .
The local elastic energy of each element is defined as the
quadratic form of a constraint Ci , scaled by stiffness ki and
volume vi . The total elastic energy is then obtained by inte-
grating this over the entire scene U (x) = ∑ne

i=1Ui (zi ) =∑ne
i=1

1
2kiviC

2
i (zi ). In our solver, we employ four types

of elastic constraints, namely: spring attachment, curvature
bending constraint, and corotational-like elastic constraints
on triangle and tetrahedron elements [6].

To decouple the nodal velocity v and contact force γ ,
related through the Delassus operator JA−1JT in Eq. (2), we
introduce an auxiliary virtual velocity p and equality con-
straint p = v. Similar to Daviet [10], we define an indicator
function Fi (p) which is zero if the virtual velocity pi lies
within the feasible manifold from Eq. (2) or +∞ when pi
violates the friction and penetration restrictions. Like the
elastic energy, the contact potential is also integrated over
the entire scene F(p) = �Fi (p). To unify the type of DoFs,
we relate velocities v and positions x through v = (x−xt )/h,
or x − xt − hp = 0 for the virtual velocities.

Plugging them into Eq. 6, we have

E(x) = 1

2h2

∥∥∥M 1
2 (x − x)

∥∥∥2 +
ne∑
i=1

U (zi ) + F(p),

s.t . D x = z, x − xt − hp = 0.

(7)

There are two primal variables in Eq. (7), which may not
appear perfectly aligned with the ADMM scheme in Eq. (3).
Therefore, we concatenate z and p into a single variable
y = [zT ,pT ]T . Additionally, we introduce diagonalmatrices
We = diag([ke0, ke1, ..., kei , ...]ρ) and Wc = kcρIn , where
kei represents the stiffnesses of the i-th elastic constraints, kc
is a user-defined contact intensity, n is the number of contacts,
and ρ denotes the ADMM penalty parameter. The constraint
of form Ax + By + c = 0 then becomes

[
WeD
1
hWc

]
x +

[−We 0
0 −Wc

] [
z
p

]
+

[
0

−Wc
1
h xt

]
= 0. (8)

After introducing dual variables λc and λe associated with
constraintsDx = z and x−xt +hp = 0, the ADMM iterative
scheme for solving soft body dynamics with frictional con-
tacts is then formulated as the following 4 steps. At iteration
l + 1,
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1. The global strain propagation step xl+1 ← argminx L1,
where

L1 = 1

2h2

∥∥∥M1/2(x − x)
∥∥∥2 + 1

2

∥∥∥W1/2
e (Dx − zl + λle)

∥∥∥2

+ 1

2

∥∥∥W1/2
c (x − hpl − xt + λlc)

∥∥∥2 .

2. The local elasticity projection step zl+1 ← argminz L2,
where

L2 =
∑
i

U (zi ) + 1

2

∥∥∥W1/2
e (Dxl+1 − z + λle)

∥∥∥2 ,

which can be independently solved for each finite ele-
ment.

3. The frictional contact projection step, aiming to project
the virtual velocity p into a feasible manifold pl+1 ←
argminp L3, where

L3 = IKμ(p) + 1

2

∥∥∥W1/2
c (xl+1 − hpl+1 − xt + λlc)

∥∥∥2 .

Here we replace indicator function F(p) with IKμ(p) to
clarify that the feasible set is a friction cone Kμ.

4. The dual update step.

λl+1
c =λlc + Dxl+1 − zl+1,

λl+1
e =λle + xl+1 − hpl+1 − xt .

Step 2 can be executed locally for each element in paral-
lel [32], and step 4 is trivial. We will delve into Step 1 and
Step 3 in Sects. 4.2 and 5, respectively.

4.2 Global strain propagation

The global strain propagation aims for convergence by com-
bining contributions from elasticity and contact. Considering
argminx L1 as anunconstrainedquadratic optimizationprob-
lem,we can derive its first-order optimal condition∇xL1 = 0
to obtain a globally minimal solution. This leads to a linear
system with a constant left-hand side, which remains con-
sistent despite changes in contact detection information and
elastic stress,

(M + h2DTWeD + h2Wc ) x =
Mx + h2DTWe(zl − λle) + h2Wc(pl − λlc).

(9)

4.2.1 Rayleigh damping

Damping plays a crucial role in simulating realistic dissipa-
tive effects, but achieving it is not always straightforward.
Applying artificial decay proportional to velocity can elim-
inate global rigid body motion, while methods like local

damping correction, as in [28],may result in unnaturally rigid
behavior of soft bodies [22]. In our approach, we address
damping in the global strain step, aiming to achieve a plau-
sible result with minimum overhead.

FEM elastic system often uses the Rayleigh damping
fd = −kdH(xt+1)vt+1, where kd is damping stiffness, and
H = ∂2E

∂x2 is the implicit elastic energy Hessian. However,
this does not apply to our system, not only because it is chal-
lenging to compute but also because it disrupts the constancy
of our left-hand side. Fortunately, our global energy L1 has
quadratic contribution fromelasticity, allowing us to simplify
the damping force to fd = −kdDTWeD(xt+1)vt+1. To inte-
grate damping implicitly, our final global propagation system
becomes

⎧⎪⎪⎨
⎪⎪⎩

( M + h2DTWeD + h2Wc + Adamp ) x =
Mx + h2DTWe(zl − λle) + h2Wc(pl − λlc) + bdamp,
Adamp = hkdDTWeD,

bdamp = Adampxt .
(10)

It’s worth noting that the system matrix remains constant
across time steps. In practice, our damping method is similar
to the Laplacian damping employed in the PD frame-
work [22].

5 Decoupled frictional contact solver

In this section, we present the decoupled frictional contact
projection and discuss how it bypasses the expensive Delas-
sus operator JA−1JT to achieve efficiency.

To solve step 3, we assume that Kμ is a second-order
cone [39], and find the first-order optimal conditions to L3

as

⎧⎨
⎩

Wcp = JT γ + 1

h
Wc(x − xt + λc),

u = Jp, (u, γ ) ∈ Kμ.

(11)

Note that JT γ does not directly result from taking the deriva-
tive of L3 with respect to p. Rather, it is determined by the
requirements to satisfy the indicator function IKμ , which
enforces that the velocity p remains within the feasible
manifold defined by Kμ, adhering to the friction laws and
Signorini’s condition.

This can be explained through the consideration of two
cases. In instances where the contacts are separating, p lies
within the cone Kμ and JT γ is 0. Otherwise, when the con-
tacts are sliding or sticking, JT γ represents the contact force
directing p toward its projection on the manifold. It is impor-
tant to note that this holds true under the assumption that Kμ
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is a convex cone, a condition we establish earlier by assum-
ing Kμ to be a second-order cone. A detailed derivation can
be found in the appendix of [10].

In situations where Kμ is non-convex, like Coulomb fric-
tion law, there is no guarantee that Eq. (11) remains valid.
Nonetheless, the two types of friction laws exhibit the same
behavior when the contact pair is either separating or stick-
ing. The primary divergence emerges in the sliding case:
Coulomb friction produces a relative velocity u precisely
aligned with the tangent plane, while convex friction laws
generate a separating normal relative velocity uN > 0 [10,
39]. Although theoretically this inconsistency may introduce
convergence risks, this substitution works well in a majority
of practical cases. Moreover, we introduce a contact stabi-
lization technique later in the paper to further mitigate the
potential instability.

5.1 Local contact projection

Weconsider two types of contacts in the simulation, the edge-
edge contacts and the point-triangle contacts. For either type,
the gap function can be linearly represented from the posi-
tional DoFs using φc = ∑

i∈c Jc,ixi .
By taking Shur complement and denoting the Delassus

operator as Q = JW−1
c JT , the complementarity problem in

Eq. (11) becomes

⎧⎨
⎩

u = Qγ l + 1

h
J(xl+1 − xt + λlc),

(u, γ ) ∈ Kμ.

(12)

In contrast to the densematrixJA−1JT , theDelassus operator
Q exhibits significant sparsity, which makes it suitable for
iterative methods. We therefore solve Eq. (12) using PGS.
Denoting the constant term 1

h J(x
l+1 − xt + λlc) as b

l+1, at
iteration k+1, each contact g is resolved sequentially by first
initializing

uk+1
g =

{
qg,dγ

k+1
g + �oqg,oγ

l
o + bl+1 if k > 0,

Jp if k = 0,
(13)

where the superscript k+1 denotes the implicit variables
undergoing update, qg represents the block corresponding
to contact g withinQ, and the subscripts d and o distinguish
diagonal and off-diagonal elements, respectively. Subse-
quently, we employ the enumerative solver by Daviet [10] to
project (uk+1

g , γ k+1
g ) into Kμ. Notably, the scale matrix qg,d

is isotropic, rendering the projection of (uk+1
g , qg,dγ k+1

g ) into
Kμ equivalent to our problem. To elaborate, we classify the
contact into three cases based on

u∗
g = uk+1

g − qg,dγ
k+1
g = Jpk+1 − qg,dγ

k+1
g , (14)

1. Separating. If u∗
g · n > 0, where n is the contact normal,

the collision is parting and we set uk+1
g = u∗

g .
2. Sticking. In the sticking case,uk+1

g is set to0. This scenario
can be detected when −u∗

g lies in Kμ.
3. Sliding. If neither of the above cases holds, the contact is

in a sliding state. Here,uk+1
g is anticipated to be zero along

the normal, and the force qg,dγ k+1
g truncated at cone Kμ

in the tangential plane. Therefore, we have

uk+1
g = u∗

g,T + μ

∥∥∥u∗
g,N

∥∥∥ u∗
g,T∥∥∥u∗
g,T

∥∥∥ ,

where u∗
g,T and u∗

g,N are the tangential and normal com-
ponents of u∗

g , respectively.

Once uk+1
g is computed, we can synchronize the update

of γ k+1
g using either Eqs. (13) or (14) to maintain their com-

patibility. Subsequently, we immediately adjust the velocity
pk+1 of the corresponding four nodes by

pk+1
i = pi + Jg,i

wi

(
γ k+1
g − γ g

)
.

6 Discussion

The details of our contact solver are summarized in Alg. 2.
To maintain alignment with [32], we have reordered step
1 and step 3. In practice, a small number of PGS itera-
tions (1–6 in our solver) within each ADMM iteration are
sufficient to achieve a near-optimal solution. This usually
yields a penetration-free outcome with visually plausible
frictional contact response, even in challenging scenarios
such as multi-layer cloth. The fast convergence is attributed
to the Gauss-Seidel style iteration scheme, which resembles
the fast constraint updates in PBD. Each contact projection
step directly updates the virtual velocityp for the correspond-
ing four nodes, in addition to the contact force λ. To keep the
contact feasible manifold up to date, more than one collision
detection is triggered to update the active contacts set within
a single time step. This approach shares similarities with ICA
[33] and IPC [23], which repeatedly identify newly updated
contact manifolds within a time step. The distinction lies in
our formulation of contact dynamics, which is fundamentally
dual-based and capable of solving primal elastodynamics in
a local–global manner.

6.1 Contact stabilization

With persistent and multi-layer contacts, the PGS method
usually has two common issues: penetration and jittering.
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Algorithm 2: ADMM solver for elastic and contact
dynamics from time t to t + 1
Data: mass matrixM; weight matrixWe,Wc; selection matrix

D, timestep h; #element ne; #vertices n;
Input: position xt ; velocity vt ; dual variable λe, λc
Output: position xt+1; velocity vt+1; dual variable λe, λc

1 x ← xt + hvt ; b ∈ Rn×3; z ∈ Rne×3; xcurr ← x ;
2 for l from 1 to max ADMMI terations do
3 if collision detection interval reached then
4 Update collision detection ;
5 k ← #contacts, Q ← Rk×4;
6 Precompute Qc = JTc WcJc ; /* Eq. 12 */
7 end

/* Step 2: Elastic local step */
8 z ← D xcurr + λe;
9 Solve elastic projection in parallel, update z;

/* Step 3: Contact projection step */
10 p ← (xcurr − xt + λc)/h;
11 for k from 1 to max PGSI terations do
12 Solve Eq. 13 for every contact, update p ;
13 end

/* Step 1: Global Propagation, Eq. 9 */

14 b ← Mx + h2DTWe(z − λe);
15 b ← b + h2Wc(hp + xt − λc);
16 Solve the linear system using precomputed LLT

decomposition, update xcurr ;
/* Step 4: Dual update */

17 λe ← λe + Dxcurr;
18 λc ← λc + xcurr − xt − hp;
19 end

These challenges stem from the difficulty to rapidly con-
verge when facing simultaneous but contradicting contacts.
In some circumstances, allowing a provisional penetration
can be advantageous to resolve contacts in conflict.

To stabilize the contacts, we introduce compliance for
these hard constraints, drawing inspiration from the com-
pliance in XPBD.We replace the fraction α of the Lagrange-
multiplier-based collision force with a secondary penalty
force. Assuming a Hookean spring at the contact point, the
penalty force is fspring = −ksφNn, where ks is the spring
constant, and φN is the gap function along the contact nor-
mal. Blending the hard contact force γ and the spring force,
Eq. (11) becomes

[
Wc −JT

J αI

] [
pl+1

γ

]
=

[
Wc(vl+1 + 1

hλlc)

u − kshα�N

]
,

(u, γ ) ∈ Kμ,

(15)

where �N is the concatenated vector of φN . This results in a
Schur complement equation slightly different than Eq. (12)

u = Q’γ + J(vl+1 + 1

h
λlc) + kshα�N ,

Q’ = Q + αI.
(16)

However, the local contact projection can be carried out in
the same manner as before.

The compliance factor α plays a crucial role in balancing
the hard and the soft contacts. Setting α = 0 or 1 results
in purely hard or soft contact. In practice, employing a very
smallα and a significantly high ks is enough to ensure that the
combined contact forces do not incur penetration. However,
the major drawback of this stabilization scheme, apart from
the additional user parameters, lies in the inability to reliably
model friction on the supplemental penalty forces.

6.2 Anisotropic friction

Anisotropic friction response is often desired when simulat-
ing cloth contacts, especially for fabrics with uniqueweaving
patterns. To achieve this, we incorporate the Matchstick
Model [13] into our contact solver.

To capture the anisotropic texture of the surface, we intro-
duce a structure direction field, which represents a vector
field tangent to the surface. The Matchstick Model employs
an elliptical cone, where the angles of the axes are deter-
mined by the two field vectors on the contacting surfaces,
denoted as s1 and s2. The model is defined as follows

t = s1 + s2
‖s1 + s2‖ , b = n × t,

d = 1 − 2

π
arccos (|s1 · s2|),

μt = dμaniso1 + (1 − d)μiso,

μb = dμaniso2 + (1 − d)μiso,

(17)

where t and b denote the tangent and binormal orientations,
andμiso,μaniso1, andμaniso2 represent user-defined isotropic
and anisotropic friction coefficients. Notably, the anisotropy
reaches itsmaximumwhen s1 and s2 are parallel, and reduces
to isotropic friction when they are perpendicular.

We replace the isotropic friction cone Kμ in Eq. (12) with
the anisotropic counterpart Kμt,μb . To project (u, γ ) onto
the elliptical cone, we truncate ut within the tangent space
by calculating the intersection points with ellipse P using
the parametric equation P(θ) = μt sin(θ)+μb cos(θ). This
assessment determines if truncation is necessary and iden-
tifies the precise truncated position. This minor refinement
allows us to achieve visually plausible anisotropic friction
behavior.

6.3 Parameter heuristics

One potential drawback of our ADMM scheme is its sen-
sitivity on Wc and We. Choosing them arbitrarily will
negatively affect convergence. In practice, we use We =
0.5K according to the elastic stiffness K to achieve best
convergence, and heuristically set Wc,v = g(ηv), where
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too small heuristic too largetoo small heuristic too large

Fig. 1 Influence of different choices of Wc

g(ηv) = 1
h2
clamp(25mv, 0.001ηv, ηv))I for the v-th vertex,

as suggested by [10], where mv is its mass, and ηv is the
smallest eigenvalue of its elastic matrix’s 3× 3 block on the
diagonal. Due to the isotropy of our global propagation, the
three eigenvalues are equal and therefore can be calculated
as ηv = mv + (h2DT

v We,vDv), where Dv is the v-th column
of D. Figure1 illustrates the result of different Wc.

7 Results

We evaluate our method in various scenarios detailed in
Table 1. Our solver is implemented in C++ and executed on
a desktop PC with an Intel i9-13900k CPU and 32GB RAM.
We use Eigen3 for all linear algebra operations and oneTBB
to parallelize computations. Additionally, we also integrate
a naive BVH for broad-phase contact culling and discrete
proximity query for narrow-phase collision detection.

7.1 Effectiveness validation

Wepresent a comprehensive evaluation of our solver, demon-
strating its effectiveness across four key dimensions: contacts
management in intricate setups, isotropic friction handling,
anisotropic friction handling, and convergence properties.

7.1.1 Intricate contact setups

In Fig. 2a, we illustrate the ball on torus scenario, where a
dense elastic ball falls onto a stationary torus, separated by
three layers of cloth.When employing a smaller friction coef-
ficient μ, both the ball and the cloth reach ground. However,
a higher μ increases friction, impeding the ball from pass-
ing through the opening in the torus. In Fig. 2b, we illustrate
the ball on layers scene, which features a stack of 10-layer
cloths, with one of them pinned on four corners. A heavy
ball falls onto the cloths, inducing many frictional contacts.
Remarkably, the simulation remains stable and visually plau-
sible, even as the number of contacts exceeds 2.3 times the
number for DoFs.

We further assess our solver in a more practical and chal-
lenging dancing scene, as shown in the top of Fig. 3. Our
solver demonstrates the capability to generate high-quality
cloth motion at an interactive framerate. It’s noteworthy that

Fig. 2 Multi-layer frictional contact tests

the characters’ cloths and trousers adhere to the moving bod-
ies exclusively through friction, without any explicit pinning.
Our solver also scales well, as illustrated at the bottom of
Fig. 3, where over 800 elastic donuts with 1.3K vertices each
fall on a plane. At timestep h = 0.025s and 40 ADMM iter-
ations per timestep, this stress test is able to produce visually
plausible result for over 1 million vertices (over 3 million
DoFs), averaging at 33.2 s per frame, with a slight perfor-
mance tweak by carrying out the global step individually for
each donut.

When comparing with the state-of-the-art open-sourced
IPC [23] and C-IPC [24] methods, our method is able to
reproduce the visual result under the same time step and
material parameters. As illustrated in Fig. 4, the twisting rods
scene, adapted from the IPC paper, simulates four rods with
intricate intertwining under large stress; the drape on sphere
scene simulates a drape falling onto a rotating sphere. Our
method has an impressive 9.7× (twisting rods) and 63.2×
(drape on sphere) speed-up, respectively. We also noticed
that the computing time of our solver is less affected by the
collision density compared to the IPC methods. However, in
the presence of extreme stress, our solver cannot ensure suc-
cessful contact, unlike the IPC family methods, particularly
when operating within highly constrained time limits.
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Fig. 3 Top: dancing characters from SMPL. The character animation
and clothing meshes are from HOOD [17]. Bottom: large-scale scene
with over 3 million DoFs

Fig. 4 Top: comparison with C-IPC in drape on sphere. Bottom: com-
parison with IPC in twisting rods

7.1.2 Isotropic friction

While the dancing scene has a visual validation of the effec-
tiveness of our frictional contact solver, Fig. 5 provides
a further examination of its accuracy using the masonry
arch structure. This scene serves as a challenging case and
test benchmark for friction simulation, adapted from Li et
al. [23]. The friction coefficient μ plays a crucial role: a high
value (0.9) leads to a stable equilibrium, while lower values
(0.4, 0.05) may result in the disruption of the equilibrium
due to sliding. Note that our solver does not simulate “rigid
bodies,” but very stiff elastic pieces as approximation in this
scene.

Another demanding friction benchmark is the house of
cards, inspired by ARGUS [21]. As illustrated in Fig. 6, our
solver effectively handles friction in this scene, maintaining

Fig. 5 Masonry arch with different friction coefficient

Fig. 6 House of cards with different friction coefficient and mesh res-
olution. The yellow dots indicate contact points

card stability under high friction coefficients and different
mesh resolutions.

We further validate our solver analytically on the interac-
tions of a piece of cloth or a box falling onto a slope with
varying angles and friction coefficients. The obtained results
align with the analytical expectations, as illustrated in Fig. 7.
This validation confirms the accuracy of our solver and is
consistent with state-of-the-art works [21, 25].

7.1.3 Anisotropic friction

Figure 8 shows the scene cloth rolling to validate the
anisotropic friction response. We set μiso = 0.3, μaniso1 =
0.05 and μaniso2 = 1.3. The green plane features a fric-
tion structure direction normal to the beige cloth, resulting
in isotropic resistance. Conversely, the violet plane, with the
same friction structure but placed perpendicularly, exhibits
higher friction, impeding themovement of the cloth and even-
tually causing it to roll.
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Fig. 7 Analytical validation of our contact simulation. We use slope
angles 30 and 45 degrees and friction coefficients 0.4 and 0.7 for the
box and cloth, respectively

Fig. 8 Anisotropic friction test. Left: the result. Right: the visualization
of the friction structure directions

7.1.4 Convergence of ADMM

Figure 9 presents the residual profile throughoutADMMiter-
ations at frame 80 for the twisting rods and ball on layers
scenes. Here, PR is the satisfiability of linear constraint in
Eq. (3), while DR represents the overall convergence [7, 39]:

PRl+1 =
∥∥∥(D xl+1 − z) + (xl+1 − xt − hp)

∥∥∥2

DRl+1 =
∥∥∥DTWe(zl+1 − zl) + Wc(pl+1 − pl)

∥∥∥2

We prioritize PR over DR, as PR reflects the consistency
of the final result with the contact projection outcome, which
is usually more visually noticeable than the absolute solution
accuracy.

The effectiveness of our approach relies on the judicious
choice of Wc matrices. Typically, our solver experiences a
rapid decrease in residuals within the initial 20 to 30 itera-
tions. Periodic up-and-down jitter during collision detection
intervals is a regular occurrence, updating the set of con-
tact constraints and inducing fluctuations in residuals. This

Fig. 9 Residual profile of two scenes at frame 80. DR: dual residual,
PR: primal residual, CR: combined residual

Fig. 10 Left: Curtain falling on Armadillo using XPBD and our
method. Right: Log relative error on selected frame

behavior is expected and is also observed in other research,
such as [19].

We also compare our solver with XPBD cloth, as depicted
in Fig. 10, where a draped curtain interacts with Armadillo.
With the identical PGSmethod for contact resolution applied
for both methods, we observe a faster convergence for our
method during the initial iterations, achieving a penetration-
free state at a substantially earlier stage.

7.2 Ablation experiments

The integration of contact stabilization and Rayleigh damp-
ing constitutes a pivotal enhancement under certain circum-
stances. In the following, we present an evaluation of the
efficacy of these incorporated features.

7.2.1 Contact stabilization

Figure 11 illustrates a challenging multilayered scene fea-
turing 20 layers of cloth stacked on a static plane. The
introduction of contact stabilization, with parameters α =
10−4 and ks = 106, yields a stable and penetration-free out-
come, achieved within a mere 20 ADMM iterations for each
timestep lasting 0.033s. In contrast, omitting the stabilization
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Fig. 11 Ablation experiments for contact stabilization. Left: 20 cloth
layers jitter under 20 ADMM iterations due to penetration. Right: With
contact stabilization, the cloth stack becomes stable of penetration-free

Fig. 12 Experiments on Rayleigh damping. A piece of fabric may
exhibit small unnatural wrinkles at the edges in the absence of damp-
ing. However, by introducing a modest amount of damping (e.g.,
kd = 3 × 10−5, 10−4, 3 × 10−4), these undesirable wrinkles can be
effectively controlled without compromising the overall shape of the
fabric, as linear momentum is conserved

technique leads to persistent jittering and penetration issues
in the vertical cut view. This highlights the critical impor-
tance of our stabilization technique, especially in addressing
intricate collisions, as exemplified by the challenging cloth
stacking scenario.

7.2.2 Rayleigh damping

Rayleigh damping presents an effective approach for manip-
ulating kinetic energy without incurring significant loss
of linear momentum. Figure12 depicts a scenario where
Rayleigh damping can be used to control the formation of
wrinkles while preserving the overall shape of the fabric.

7.3 Performance

Table 1 presents an overview of time statistics for the rep-
resentative scenes, showcasing the computational efficiency
of our method. The achievement of interactive speeds in the
majority of cases is attributed to the efficiency of our novel
ADMM scheme and our lightweight contact solver. Notably,
scenes characterized by intricate collisions reveal that the
primary time-consuming factors is the PGS step.

It is important to emphasize that all experiments were con-
ducted on amulti-core CPU, utilizing a rudimentary collision
detector and PGS solver. The prospect for achieving further
acceleration is substantial, including the exploration of GPU

acceleration, the parallelization of the PGS solver through
graph partitioning, or the implementation of an enhanced
collision detector in subsequent iterations of our work. How-
ever, considering that these are non-trivial and beyond the
scope of this research, we leave it as future developments.

8 Conclusion and future works

This paper introduces a novel approach to simulate soft
body dynamics with frictional contacts through the incor-
poration of ADMM. Our method strategically combines a
locally parallel elastic deformation projection with an iter-
atively frictional contact-solving method. The efficiency of
our approach is underscored by the rapid convergence of the
contact solver, necessitating only a minimal number of PGS
iterations in each ADMM iteration to reach the penetration-
free state. Moreover, the parallelization and prefactorization
contribute to the scalability of our method, rendering its
applicability for interactive moderate-scale simulations. The
integration of the contact stabilization, anisotropic friction,
and Rayleigh damping further enhances the realism of our
solver. Thorough experiments validate the efficacy of our
method, highlighting its high performance and ability to
produce visually plausible and accurate effects in simulated
scenarios.

While our current work is practical, there is room for
improvement. Despite handling complex scenarios, our pro-
gram underutilizes the multi-core CPU due to bottlenecks in
the sequential PGS. As mentioned by [34], a fast graph par-
tition of the system could maximize the parallelism in PGS.
Alternatively, a fast GPU-based solver is another promising
future direction. Additionally, investing in a fast and robust
continuous collision detection scheme could also enhance
the method’s performance and reliability in complex inter-
actions.
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