
Simulating Cloth Using Bilinear Elements (Supplement)
Eston Schweickart

Weta Digital
Wellington, New Zealand

Xiao Zhai
Weta Digital

Wellington, New Zealand

ACM Reference Format:
Eston Schweickart and Xiao Zhai. 2021. Simulating Cloth Using Bilinear
Elements (Supplement). In Special Interest Group on Computer Graphics and
Interactive Techniques Conference Talks (SIGGRAPH ’21 Talks), August 09-13,
2021. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3450623.
3464675

1 DERIVATION OF MEMBRANE ENERGY
In the following section, we describe a membrane deformation en-
ergy based on [Volino et al. 2009] that is consistent for both triangle
elements and bilinear elements. The following section assumes
we have an isotropic stretching model; an anisotropic extension is
discussed in section 3.

Following [Volino et al. 2009], we assume that we have amapping
from a 2D material space to 3D world space for each element. From
this mapping, we can calculate a 3 × 2 deformation gradient F :

F =
[
U |V

]
The authors describe how to computeU ,V ∈ R3 from the positions
of the vertices of each triangle as well as material space coordinates.
We make a slight modification: we assume that we have a rest mesh
in world space, which is more convenient for artists to specify. Let
pi be the world space positions of an element, with corresponding
rest positions pi , where i ∈ [0, 1, 2] if the element is a triangle or
i ∈ [0, 1, 2, 3] if the element is a quadrilateral. In the latter case, we
define the associated bilinear element as:

p(s, t) = (1 − s)(1 − t)p0 + (s)(1 − t)p1 + (s)(t)p2 + (1 − s)(t)p3

To construct a deformation gradient between rest space and
world space, we find a mapping between the associated tangent
spaces. We first define linear bases for each tangent space, repre-
sented by 3 × 2 matricesT andT . For triangles, we define:

T =
[
(p1 − p0)|(p2 − p0)

]
and similarly forT . For bilinear elements, the most natural choice
is:

T (s, t) =
[
∂p
∂s (t)|

∂p
∂t (s)

]
and similarly forT (s, t). In either case, we can define the deforma-
tion gradient between the spaces by:

F =
[
U |V

]
= TR

−1

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’21 Talks, August 09-13, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8373-8/21/08.
https://doi.org/10.1145/3450623.3464675

where QR = T is the thin QR-decomposition of the rest tangent
space matrix, i.e., R−1 is a lower-triangular 2 × 2 matrix that or-
thonormalizes the rest tangent frame.

With these definitions, we return to the membrane deformation
energy:

Em =
h

2

∫
Ω
εTmKεmdA

whereh is the shell thickness,Ω is the rest surface with area element
A, εm is the membrane strain, andK is a stiffness matrix. Following
the linear thin shell model,K can be defined from Young’s Modulus
E and Poisson’s Ratio ν as follows:

K =
E

1 − ν2


1 ν 0
ν 1 0
0 0 1−ν

2


We define εm to be the Voigt form of the St. Venant-Kirchhoff

strain tensor:

εm = Voigt
(
1
2 (F

T F − I )

)
=


1
2 (U

TU − 1)
1
2 (V

TV − 1)
UTV


This is straightforward to evaluate for linear surface elements

with constant deformation gradients, but εm varies over a bilinear
patch. In this case, we can instead approximate the energy over
these faces using Gaussian quadrature:

Em ≈
h

2
∑
q∈Q

Nqp∑
i=0

дiεm (si , ti )
TKεm (si , ti )

 ∂p∂s (ti ) × ∂p∂t (si )
where Q is the set of quadrilaterals in the mesh, and Nqp is the
number of quadrature points with weights дi and abscissae (si , ti ).

At this point it is helpful to take the Taylor expansions of the
tangents at the center of the patch:

∂p

∂s
(t) =

∂p

∂s

(
1
2

)
+

(
1
2 − t

)
∂2p
∂s∂t

∂p

∂t
(s) =

∂p

∂t

(
1
2

)
+

(
1
2 − s

)
∂2p
∂s∂t

This gives us a definition of the tangents as a linear combination of
vectors that are constant per patch.U andV are linear functions of
these vectors, so the entries of εm can be written as linear functions
of their dot products. We omit the full formulas here for brevity,
but this implies that we can expand εm as follows:

εm (s, t) = Aq (s, t)ε̂m

https://doi.org/10.1145/3450623.3464675
https://doi.org/10.1145/3450623.3464675
https://doi.org/10.1145/3450623.3464675


SIGGRAPH ’21 Talks, August 09-13, 2021, Virtual Event, USA Eston Schweickart and Xiao Zhai

where Aq (s, t) is a 3 × 7 matrix function, and

ε̂m =



∂p
∂s

T ∂p
∂s

∂p
∂s

T ∂p
∂t

∂p
∂t

T ∂p
∂t

∂2p
∂s∂t

T ∂p
∂s

∂2p
∂s∂t

T ∂p
∂t

∂2p
∂s∂t

T ∂2p
∂s∂t

1


with all vectors evaluated at (s, t) =

(
1
2 ,

1
2

)
. Note that the final entry

(the constant 1) isn’t a strain, but it is needed in order to subtract
1 from the first two entries of εm , similar to how homogenous
coordinates are used to translate points in transformation matrices.
Since ε̂m no longer depends on st coordinates, we can move it
outside of the sum over Gaussian quadrature points:

Em ≈
h

2
∑
q∈Q

ε̂Tm
©«
Nqp∑
i=0

дiAq (si , ti )
TKAq (si , ti )

 ∂p∂s (ti ) × ∂p∂t (si )ª®¬ ε̂m
It is now possible to evaluate the Gaussian quadrature sum with
data known at the start of the simulation, i.e., rest positions, the
stiffness matrix, and Gaussian quadrature weights. We use this to
precompute a new 7 × 7 stiffness matrix K̂q per patch, resulting in
our final membrane energy formula:

Em ≈
h

2
∑
q∈Q

ε̂TmK̂q ε̂m

We can now calculate the membrane energy over both triangles
and bilinear patches, using 3 and 7 strain values respectively.

2 DERIVATION OF BENDING ENERGY
In our framework, we use the following bending energy:

Eb =
h3

48

∫
Ω
k1Tr(S − S)2 + k2Tr

(
(S − S)2

)
dA

where S and S are the shape operators for our current and rest
surfaces respectively, k1 = Eν

1−ν 2 , and k2 =
E(1−ν )
1−ν 2 .

To calculate it on our discrete surface of triangles and quadrilat-
erals, we divide it into two parts: an in-element term that penalizes
bending for each individual quadrilateral, and a cross-element term
that penalizes bending between adjacent elements, assuming that
each face is planar. We now discuss how to calculate both.

In-element Shape Operator. For a parameterized surface, we can
calculate the shape operator with the first and second fundamental
forms, which are calculated from the first and second derivatives
of the surface. For the bilinear patch, this gives the following:

Sq =

 0 ∂2p
∂s∂t

T
n

∂2p
∂s∂t

T
n 0



∂p
∂s

T ∂p
∂s

∂p
∂s

T ∂p
∂t

∂p
∂s

T ∂p
∂t

∂p
∂t

T ∂p
∂t


−1

=

∂2p
∂s∂t

T
n ∂p∂s ×

∂p
∂t

2
−

∂p
∂s

T ∂p
∂t

∂p
∂t

T ∂p
∂t

∂p
∂s

T ∂p
∂s −

∂p
∂s

T ∂p
∂t



where n is the normal of the surface. This is one definition of the
shape operator, but it is not unique; we have chosen the tangents
of the bilinear patch to be the basis for our tangent space, but
we are free to choose a different basis instead. In fact, we should;
subtracting shape operators as discussed above only makes sense
if they use the same tangent space basis, and there is no guarantee
that our bilinear patch tangents will be aligned between the rest
positions and the current position. Therefore, we perform a change
of basis: we orthonormalize the tangent space, keeping the direction
of ∂p

∂s consistent. We can do this by taking theQR decomposition of
our tangent vectors and using the thin version ofQ as our new basis.
R then defines how to transform our shape operator. In summary:[

∂p
∂s |

∂p
∂t

]
= QR

Ŝq = RSqR
−1

Note that there are multiple valid definitions of the reparameterized
shape operator Ŝq , since theQR-decomposition is not unique, but
all result in an equivalent bending energy. We choose the following
definition:

Ŝq =

∂2p
∂s∂t

T
n ∂p∂s ×

∂p
∂t

2


0
 ∂p∂s ×

∂p
∂t

 ∂p∂s ×
∂p
∂t

 −2 ∂p
∂s

T ∂p
∂t


With this formulation, we can calculate the shape operators using
the current and rest positions of each bilinear patch and subtract
them without issue. We have found that calculating these shape
operators once at the center of the patch is sufficient to approximate
the energy integral.

Cross-element Shape Operator. To measure bending across faces
in a way that is consistent with our in-element shape operator,
we calculate a discrete shape operator that assumes all faces are
planar. De Goes et al. [2020] describe how to calculate such a shape
operator on a polygonal mesh. Their first formulation describes
how to find the shape operator at the center of each face using
surrounding vertex normals; however, each vertex normal depends
on all of its adjacent faces, so the computational footprint for this
calculation is fairly large. Instead, we opt for the adjoint version,
which calculates a discrete shape operator for every vertex given
the normals of the surrounding faces. This implies that the bending
energy at a particular vertex depends on the surrounding 1-ring of
vertices, which is consistent with the membrane energy.

Our cross-element shape operator is:

Sv =
1

2av
TTv

©«
∑

f ∈F (v)

Qv
f д

v
f n

T
f +

(
Qv
f д

v
f n

T
f

)T ª®¬Tv
wherev is the vertexwherewe are evaluating the shape operator,av
is the voronoi area associated with vertex v ,Tv is an orthonormal
tangent frame at vertex v , F (v) is the set of faces surrounding
vertex v ,Qv

f is the linear operator that rotates the normal at f to
the normal at v , дvf is the face area gradient vector, and nf is the
normal of the face. At a high level, this operator describes how
much the normals at each face surrounding v need to be rotated to
align with the vertex normal. We will now discuss how to compute
each of these pieces in more detail.



Simulating Cloth Using Bilinear Elements (Supplement) SIGGRAPH ’21 Talks, August 09-13, 2021, Virtual Event, USA

For each face f , we calculate its area vector af , i.e., the vector
in the direction of the face’s normal with a length equal to its
area. For quadrilateral elements, we calculate this as af = 1

2 (p0 −
p2) × (p1 − p3), and denote the planar area as af = ∥af ∥ and face
normal as nf = af /af . Note that af =

∂p
∂s (

1
2 ) ×

∂p
∂t (

1
2 ), and that

af is the area of the bilinear patch when projected to the tangent
space at the center of the patch. Effectively, this is the closest linear
approximation of the bilinear patch. Then, for each vertex v , we
can compute its voronoi area as av =

∑
f ∈F (v)

af
nf

where nf is the
number of vertices of f , and the vertex normal as the normalized
sum of surrounding face area vectors.

We define the gradient vector as дvf =
1
2nf × (pv−1 − pv+1)

where pv−1 and pv+1 denote the positions of vertices adjacent to
v with respect to face f . (Note that this definition differs slightly
from [De Goes et al. 2020] thanks to simplifications in our case.)

The vector tangent frameTv is arbitrary as long as it is consistent
between the rest position and the current position. For every vertex,
we deterministically choose an adjacent edge; we orthonormalize
the vertex normal and this edge vector to construct a consistently
oriented tangent basis.

3 ANISOTROPIC STIFFNESS
We can extend our definitions ofmembrane energieswith anisotropic
stiffness. In particular, we implement orthotropic stiffness, implying
that separate Young’s modulus values are specified along orthogo-
nal directions in rest tangent space. We allow the user to specify
uv-coordinates for each vertex, but unlike other frameworks, these
coordinates do not specify the mapping to 2D material space, but
rather its orientation—the rest space positions define the scale of ma-
terial space. User-provideduv-coordinates may have some shearing
that is not respected by the rest positions, so we prioritize aligning
the u-axis in rest space with the provided coordinates, and choose
the v-axis direction by enforcing orthonormality.

Suppose a user has specified uv-coordinateswi for a triangle or
bilinear element. We define a 2 × 2 basis from these coordinates,
denotedW , calculated for triangles as:

W =
[
(w1 −w0)|(w2 −w0)

]
and for bilinear elements as:

W (s, t) =
[
∂w
∂s (t)|

∂w
∂t (s)

]
When calculating the membrane energy, we multiply the rest-

space tangent basis byW −1 before orthonormalizing, implying
QR = TW −1. We must also take this into account when computing
the deformation gradient: F = TW −1R

−1.

4 ENERGY DERIVATIVES
Thus far, we’ve only discussed the deformation energies themselves,
but we need their gradients with respect to the degrees of freedom
to calculate forces, and their Hessians to build the system matrix
used for implicit integration. Additionally, we would like to ensure
that the Hessians can be made positive semi-definite to prevent
instabilities when using Newton’s method to perform implicit inte-
gration. We will now discuss the details of these derivatives.

With the assumption that our shape operators are symmetric
(which we have ensured in the derivations above), each of our ener-
gies can be written as a sum of quadratic forms: E = 1

2
∑
i ε

T
i Kiεi

where i iterates over faces for the membrane or in-element bending
energies, or vertices for the cross-element bending energy. In each
of these cases, Ki is independent of the degrees of freedom, so the
gradient and Hessian of E can be written as follows:

∂E

∂pj
=
∑
i

∂εi
∂pj

Kiεi

∂2E
∂pj∂pk

=
∑
i

∂2εi
∂pj∂pk

Kiεi +
∂εi
∂pj

Ki
∂εi
∂pk

T

This implies that we need to find derivatives with respect to our
strains. For the membrane strains, this is straightforward, since all
of our strain measures are quadratic expressions of our degrees
of freedom, implying the Hessian tensor is constant. It has a sim-
ple structure of blocks of 3 × 3 scaled identity matrices, and it is
straightforward to find the eigenvalues and eigenvectors. We keep
either the positive semi-definite or negative semi-definite compo-
nents based on the sign of the associated stress value to ensure
that ∂2εi

∂pj ∂pk
Kiεi is always positive semi-definite. ∂εi

∂pj
Ki

∂εi
∂pk

T
is

positive semi-definite as long as Ki is, which is always true in our
system.

Our bending energy derivatives are significantly more compli-
cated, but in our experiments we have found that it is sufficient
to use a quasi-Newton approximation for these Hessians by omit-
ting the second derivative of the strain. This is acceptable since
the bending stiffness is generally small compared to the stretching
stiffness for cloth and thin shells, and our time step sizes are largely
limited by our collision algorithm.

REFERENCES
Fernando De Goes, Andrew Butts, and Mathieu Desbrun. 2020. Discrete differential

operators on polygonal meshes. ACM Transactions on Graphics (TOG) 39, 4 (2020),
110–1.

Pascal Volino, NadiaMagnenat-Thalmann, and Francois Faure. 2009. A simple approach
to nonlinear tensile stiffness for accurate cloth simulation. ACM Transactions on
Graphics 28, 4, Article 105 (2009).


	1 Derivation of Membrane Energy
	2 Derivation of Bending Energy
	3 Anisotropic Stiffness
	4 Energy Derivatives
	References

