
1077-2626 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2929808, IEEE
Transactions on Visualization and Computer Graphics

1

Vectorized Painting with Temporal Diffusion
Curves

Yingjia Li, Xiao Zhai, Fei Hou, Yawen Liu, Aimin Hao, and Hong Qin, Senior Member, IEEE,

Abstract—This paper presents a vector painting system for digital artworks. We first propose Temporal Diffusion Curve (TDC), a new
form of vector graphics, and a novel random-access solver for modeling the evolution of strokes. With the help of a procedural stroke
processing function, the TDC strokes can achieve various shapes and effects for multiple art styles. Based on these, we build a
painting system of great potential. Thanks to the random-access solver, our method has real-time performance regardless of the
rendering resolution, provides straightforward editing possibilities on strokes both at runtime and afterward, and is effective and
straightforward for art production. Compared with the previous Diffusion Curve, our method uses strokes as the basic graphics
primitives, which are able to intersect each other and much more consistent with humans’ instinct and painting habits. We finally
demonstrate that professional artists can create multiple genres of artworks with our painting system.

Index Terms—vector graphics, heat equation, procedural model, real-time application

F

1 INTRODUCTION

As the craving for digital art grows with the rapid de-
velopment of computer graphics, digital painting systems
have been widely developed and used for decades. To
date, these systems are capable of successfully mimicking
various painting styles, and many existing methods focus
on improving immersive and real-life like experience using
physics-based simulations of fluid behaviors. To name a few,
Curtis et al. [1] adopted a multi-layer paper model and the
shallow water equations for creating watercolor effects. Chu
et al. [2] did some impressive ink simulations using Lattice-
Boltzmann method, and they also implemented a real-time
watercolor painting system Expresii [3] that incorporates
impacts from gravity. Huang et al. [4] reproduced Chinese
calligraphy by replicating the diffusion of ink on “xuan”
papers. Chen et al. [5] achieved real-time 3D oil painting
in the Wetbrush system using a hybrid of Eulerian and
Lagrangian approaches in simulating oil pigment.

Although these digital painting systems can produce
good results, they all have common problems. On one hand,
these systems use discretized basis in computation and final
results, making it nontrivial to change resolution once the
painting session begins. On the other hand, the discrete
representation makes editing each individual stroke on the
fly impractical without re-simulation. Vector graphics and
vector painting systems are developed to overcome the
above drawbacks. As the underlying representation, vector

• Y. Li and X. Zhai contributed equally and should be regarded as co-first
authors.

• Y. Li, X. Zhai and A. Hao are with State Key Laboratory of Virtual Reality
Technology and Systems, Beihang University, Beijing, China.

• Y. Liu is with Beijing Piesat Information Technology Co., Ltd., Beijing,
China.

• F. Hou is with State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences, Beijing, China and University of
Chinese Academy of Sciences, Beijing, China.

• H. Qin is with Department of Computer Science, Stony Brook University,
New York, USA.

graphics have many advantages over the discretized basis,
including the nature of being resolution independent, the
ability for stroke editing and the computational efficiency.
Traditional vector graphics are generated from rasterized
images using meshes [6], but they lack the fundamental
ability for editing. Later, Orzan et al. [7] proposed Diffu-
sion Curve (DC) which solves the Laplace’s equation using
curves as the boundary conditions for color spreading.
Although this technique excels in producing high-quality
results, the DC images are composed of boundary curves
rather than strokes, which inevitably contradicts the hu-
man’s instinct and painting habits, see Figure 10. Moreover,
the intersection of DCs results in artifacts, which restrains
the flexibility of DC. Recently, DiVerdi et al. [8] put forward
a vector watercolor painting engine using procedural stroke
configurations, bringing great realism in the creation of the
digital artworks.

This paper presents a more generic digital painting
measure through a novel vector model for strokes. We first
propose a new model of vector graphics, Temporal Diffu-
sion Curve (TDC), which represents not only the graphics
but also their evolution over time using continuous func-
tions. This new model is piece-wisely parameterized and
inherently supports random-access solving in real-time. The
TDCs represent strokes similar to humans’ painting habits
and they are able to intersect and overlap each other as
usual strokes. Therefore, it is very suitable for modeling
strokes. Meanwhile, we devise a procedural model for pro-
cessing TDC strokes to realize richer visual effects, including
smooth paint diffusion, irregular paint scattering, inter-
stroke color mixing, etc. Based on these, we build a painting
system of great potential. Specifically, our method has real-
time performance regardless of the rendering resolution,
provides straightforward editing possibilities on strokes
both at runtime and afterward, and delivers various stroke
effects for art production of multiple genres. In contrast to
the former DC which solves the static Laplace’s equation
for color spreading, our method integrates the temporal

1077-2626 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2929808, IEEE
Transactions on Visualization and Computer Graphics

2

(1)

(2)

(3)

(4)

(6)

(5)

3×zoom in

9×zoom in

Fig. 1. (1)-(4) The painting session of a still-life artwork and (5)-(6) the zoom-in views of the final result. Our system recreates a very similar workflow
to the real-life painting with brushes and papers and remains sharp when zoomed in significantly due to the nature of vector graphics.

heat equation instead with TDCs being the diffusion source.
More concretely, we find the closed-form solution of the heat
equation by using Fourier transform and only compute the
numerical density right before the procedural stroke pro-
cessing. In this way, the painting can use evolving strokes
as the basic primitives as opposed to the counterintuitive
motionless boundary curves in DC images, see Figure 10 for
details. We finally demonstrate that professional artists can
create satisfying artworks of various kinds with our painting
system.

In short, the main contributions of this work include:

• A new form of vector graphics, Temporal Diffusion
Curve, which models the evolution of strokes;

• A random-access solver of the heat equation, which
is efficient and suitable for vector graphics;

• A procedural TDC stroke processing function to pro-
vide richer visual effects, and;

• A real-time vector painting system which is efficient,
easy to use, capable of editing on the fly, and can be
used to create artworks of multiple styles.

2 RELATED WORKS

The vector graphics and digital painting systems are the
most related topics of this paper. We briefly review the
existing works of these categories in this section.

2.1 Vector Graphics

Vector graphics have many advantages over rasterized im-
ages, such as resolution-independence, sparse representa-
tion, compact storage and geometric editability. Traditional
vector graphics are generated based on meshes [6], [9] and
can be represented by vector primitives with colors, such as
points, curves, and polygons. Lately, Favreau et al. [10] pro-
posed a line drawing vectorization method that explicitly
balances the fidelity to the input and result simplicity which
is measured by the number of curves and their degrees.

Another important research direction of vector graph-
ics is based on the idea of Diffusion Curve (DC) images
which create vector images of smooth color gradients, as
proposed by Orzan et al. [7]. The aim of DC is to solve
a 2D Laplace’s equation with known boundaries to obtain
the desired vector image. For instance, Bowers et al. [11]
presented a stochastic ray tracing strategy in which the
curves define source radiance whose visible contribution
will be integrated at a shading pixel to produce color. Sun et
al. [12] used boundary element method where the Green’s
function is taken to transform the Laplace’s equation into a
boundary integral along DCs. Recent researches focus on
controlling the color changes away from the determined
boundaries by solving the bi-Laplace equation using thin-
plate splines [13] or BEM [14]. Jeschke et al. [15] proposed
a method of mixing multiple DCs, achieving higher degrees
of freedom and similar results as solving the bi-Laplace
equation, but with higher efficiency and better numerical
stability. Most recently, Hou et al. [16] proposed a new DC
extension, Poisson Vector Graphics (PVG), which provides
more control over the resulting images through multiple
sub-regions. PVG can easily produce photorealistic effects
such as specular highlights, core shadows, translucency and
halos. However, the DCs depict region boundaries contra-
dicting human habits of painting and they cannot intersect
each other restraining the production of artists.

2.2 Digital Painting Systems
Digital painting systems have been thoroughly studied in
recent years. Most of the existing works focus on reproduc-
ing the painting experience in reality. To model pigments,
these painting systems use various physics-based fluid sim-
ulation methods, including the diffusion equation [4], [17],
the shallow water equation [1], [18] or the Navier-Stokes
equation [5].

Curtis et al. [1] presented a very effective system for
painting western watercolors. They used the shallow-water
equation and a multi-layer paint model to simulate the

1077-2626 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2929808, IEEE
Transactions on Visualization and Computer Graphics

3

pigment behaviors. Although it was not a strict simulation
of physics, their system achieved very good visual results
with the Kubelka-Munk diffuse reflection model [19] for
rendering. Van Laerhoven et al. [20] used a similar multi-
layer pigment model and the faster stable fluid method [21]
to solve the Navier-Stokes equation, realizing a real-time
watercolor painting system. In order to reproduce more
realistic drawing experience, Chu et al. [2] proposed a
real-time ink dispersion simulation on GPU by using the
lattice Boltzmann method to process the percolation of
ink on paper. Later, researchers are able to produce more
complicated phenomenon during painting. For example,
Blakovi [22] achieved wetting, drying and re-wetting al-
ready dried colors, while urikovi et al. [23] considered the
vortex of watercolor pigments and used a combination of
2D grids and particles [24] to simulate the diffusion of ink.
Different from these grid-based methods, DiVerdi et al. [8]
present a procedural algorithm for generating watercolor-
like dynamic paint behaviors using a particle-based model.
Their stroke representation is also vectorized, which allows
rendering at arbitrary resolutions.

Besides watercolor, the oil painting is also a very popular
direction. However, digital oil painting systems are usually
more difficult to implement due to the high viscosity. Baxter
et al. [25] implemented the DAB system, which used a
physics-based spline brush model and a triangular grid
canvas model for paint transfer. Later, Baxter et al. [26]
proposed the improved IMPaSTo system using a 2.5D fluid
model to simulate pigment propagation. In addition, Chen
et al. [5] implemented a real-time 3D oil painting system
Wetbrush which used a new Eulerian-Lagrangian approach
for simulating detailed liquid effects. In order to achieve
real-time performance on portable hardware, Stuyck et
al. [18] adopted Shallow Water Equation and a multi-layered
structure to model the oil pigments.

There are also other art genres which draw the re-
searchers’ attention. For instance, to simulate Chinese cal-
ligraphy, Huang et al. [4] presented a GPU-based real-time
system that includes physically-based brush deformation
and seamless integration with ink diffusion rendering on
“Xuan” paper structure. DiVerdi [27] conducted a very
detailed analysis of the existing digital painting system.
They decomposed the digital painting system into five
components, including input control, tip shape, pigment
transfer, canvas propagation, and pigment rendering. Fur-
thermore, the results of digital paintings such as calligraphy,
oil painting, watercolor, airbrush, pencil, and crayon have
been categorized. Please refer to their survey for a more
detailed summary on this topic.

3 METHOD OVERVIEW

As illustrated in Figure 2, the drawing of strokes with
our method comprises three major steps in cascade: the
curve setup, the TDC solving and the procedural stroke
processing. At the very beginning, a sequence of points
sampled with a fixed time interval are taken as the input
of our system. The curve setup step builds a curve based
on these points and treats all the quantities along the stroke,
including position, color, transparency and density, as con-
tinuous functions by using the cubic-spline fitting.

With the source curve determined, the second step is to
solve the diffusive evolution process using the TDC formu-
lation. Conventionally, this phenomenon is usually handled
with finite-difference discretization and approximated with
iterative solvers. However, this obviously contradicts the
goal to keep our method vectorized. Instead, we develop
a new method based on Fourier transform to reproduce
the diffusion process, which does not require discretization
during calculation. Therefore, the result of our solver can be
exported at any resolution without losing details. Having
the diffusion solved, an extra procedural model is applied
to the result to render different effects on strokes, such
as feathering, edge darkening, non-uniform scattering, etc.
The TDC solving and procedural stroke modeling will be
explained in depth in the following sections. We list the
symbols used in our method in Table 1.

TABLE 1
Definition of notations.

Notation Description Defined in Type
φs Segment density TDC segment Scalar
φ Density Canvas Scalar
Φ Fourier transform of φ Canvas Scalar
Cs Segment color TDC segment 4D vector
C Stroke color Canvas 4D vector
ω Granulation opacity TDC segment Scalar
ω̄ Granulation opacity Canvas Scalar
D Diffusion coefficient TDC segment Scalar
tmax Maximum diffusion time TDC segment Scalar
η Canvas texture Canvas Scalar

4 TEMPORAL DIFFUSION CURVE

Temporal Diffusion Curve, which can be considered as an
extension of the DC [7], is proposed in this section for
strokes modeling. There are mainly two differences between
TDC and its predecessor. For one thing, DC handles the
Laplace’s equation for the static result, while TDC integrates
the heat equation which represents the temporal evolution
of color spreading. For another, DC uses color defined
on boundary curves, which is fairly counterintuitive. In
contrast, our TDC models the strokes directly, offering a
user-friendly tool for painting purpose. In this section, to
be suitable for vector graphics, we propose a random-access
solver for the heat equation in 2D infinite domains with
Fourier transform method, followed by the details of our
TDC diffusion solver.

4.1 Continuous Diffusion in 2D

The heat equation models the spatial distribution and tem-
poral changes of the density variable φ(x, y, t) in 2D infinite
domains, where the density is used to handle color opacity
in this paper. Given the initial condition φ0(x, y), the density
can be seen as the following initial-value problem,{

∂φ
∂t −D(∂

2φ
∂x2 + ∂2φ

∂y2) = 0

φ(x, y, 0) = φ0(x, y)
, (1)

where φ is short for φ(x, y, t) and D is the diffusion coeffi-
cient.

1077-2626 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2929808, IEEE
Transactions on Visualization and Computer Graphics

4

Input Points Temporal Diffusion Curves

TDC SolvingCurve Setup

Procedural Stroke

Processing

Diffusion Result Rendered Strokes

Fig. 2. The drawing of strokes comprises three major steps in cascade: the curve setup, the TDC solving and the procedural stroke processing.

It is well known that the Fourier transform method can
be used to solve the heat equation. We review the derivation
for ease of understanding. Applying 2D Fourier transform
on both sides of the partial differential equation leads to an
ordinary differential equation,

dΦ

dt
+D(k21 + k22)Φ = 0, (2)

where k1, k2 are spatial frequencies and Φ(k1, k2, t) is the
Fourier transform of φ(j1, j2, t),

Φ(k1, k2, t) =

∫∫ +∞

−∞
φ(j1, j2, t)

e−i(k1j1+k2j2)

(2π)2
dj1dj2, (3)

where j1, j2 are integral variables standing for spatial coor-
dinates. The initial condition is determined by

Φ(k1, k2, 0) =

∫∫ +∞

−∞
φ0(j1, j2)

e−i(k1j1+k2j2)

(2π)2
dj1dj2. (4)

Therefore, we have

Φ(k1, k2, t) = Φ(k1, k2, 0)e−D(k21+k
2
2)t. (5)

Applying the inverse Fourier transform on Φ gives

φ(x, y, t) =

∫∫ +∞

−∞
Φ(k1, k2, t)e

i(k1x+k2y)dk1dk2

=

∫∫ +∞

−∞

[∫∫ +∞

−∞
φ0(j1, j2)

e−i(k1j1+k2j2)

(2π)2
dj1dj2

]
e−D(k21+k

2
2)tei(k1x+k2y)dk1dk2

=
1

(2π)2

∫∫ +∞

−∞
φ0(j1, j2)

[∫∫ +∞

−∞
e−i(k1j1+k2j2)

e−D(k21+k
2
2)tei(k1x+k2y)dk1dk2

]
dj1dj2

=
1

(2π)2

∫∫ +∞

−∞
φ0(j1, j2)

[∫∫ +∞

−∞
ei(x−j1)k1

ei(y−j2)k2e−Dk
2
1te−Dk

2
2tdk1dk2

]
dj1dj2.

(6)
According to the integral formula∫ +∞

−∞
e−ax

2

ebxdx =

√
π

a
e
b2

4a , (7)

we have

φ(x, y, t) =
1

(2π)2

∫∫ +∞

−∞
φ0(j1, j2)

[√
π

tD
e

(x−j1)2

4tD√
π

tD
e

(y−j2)2

4tD

]
dj1dj2

=
1

4πtD

∫∫ +∞

−∞
φ0(j1, j2)e−

(x−j1)2

4tD e−
(y−j2)2

4tD dj1dj2,

(8)
which is the continuous solution of the diffusion problem in
Equation (1).

4.2 Diffusion with Temporal Diffusion Curves

We use TDCs as the diffusion source in our solver. A TDC is
made up of several cubic splines, and each spline L can
be represented by a pair of parametric equations of the
parameter p {

x = f(p)

y = g(p)
, p ∈ [pmin, pmax], (9)

where [pmin, pmax] denotes the domain of p. Initially, the
density is 0 everywhere else but on the curve. φ0(x, y)
should hence be written using the 2D Dirac delta function
as

φ0(x, y) = φ0(p)δ(x− f(p))δ(y − g(p)). (10)

According to the properties of the δ function [28], Equa-
tion (8) can be rewritten as the line integral over L

φ(x, y, t) =
1

4πtD

∫
L

φ0(p)e−
(x−f(p))2

4tD e−
(y−g(p))2

4at dl

=
1

4πtD

∫ pmax

pmin

[
φ0(p)e−

(x−f(p))2
4tD e−

(y−g(p))2
4tD√

f ′(p)2 + g′(p)2
]
dp.

(11)

With Equation (11), the diffusion result of any given value
(x, y, t) reduces to a single-variable integral and are in-
dependent of other values. Thus, with the random-access
solver, the output resolution can be infinitely magnified
as long as the memory allows since each point can be
calculated separately. Additionally, considering the display
resolution is fixed, zooming-in only requires the pixel coor-
dinates to be updated with no extra boundary processing,
which ensures real-time performance for our system.

1077-2626 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2929808, IEEE
Transactions on Visualization and Computer Graphics

5

5 PROCEDURAL STROKE PROCESSING

To extend the usability of our painting tool, we implement
a procedural processing on TDC strokes to render various
effects. In this section, we introduce the color rendering of
a single TDC and the subsequent color mixing between
the active curves and the existing canvas. As listed in
Algorithm 1, the TDC color rendering comprises 3 steps,
namely TDC integration, density modification, and stroke
colorization. First, we calculate the TDC diffusion following
the aforementioned model and rasterize the resulting func-
tion using the display resolution. The density modification
is then applied to achieve a target stroke style. Later, the
stroke color is determined based on the TDC density and the
color parameters. Having the individual strokes updated,
we use a multi-layer color mixing to finally complete the
color update of one iteration, see Algorithm 2. A pipeline of
this section can be found in Figure 3.

Algorithm 1: The framework of single TDC color
rendering

input : The parametric equation and parameters of
the j-th TDC.

output: The stroke color Cj of the display resolution.
/* TDC Integration */

1 for the k-th TDC segment in j-th TDC do
2 Compute TDC segment density φjk using

Equation (13).

3 Compute TDC density φj using Equation (14).
/* Density Modification */

4 Incorporate the canvas texture using Equation (16).
5 Perform density modification using

Equation (17), (18) or (19).
/* TDC Colorization */

6 Compute averaged color C̄sj using Equation (20)
7 Compute stroke color Cj using Equation (21)

5.1 TDC Integration

A TDC is made up of several spline segments, and the
parameters are hence defined on each TDC segment, in-
cluding the diffusion coefficient Djk, the initial density φsjk,
the maximum diffusion time tmax

jk , the 4-channel color Csjk
and the granulation opacity ωjk ∈ [0, 1], where subscript
jk indicates the k-th segment on the j-th TDC. The diffu-
sion coefficient Djk affects the width and blurring of the
diffusion. The larger the diffusion coefficient, the larger
the diffusion width and the more blurred the edge and
vice-versa, as shown in Figure 5. The initial density φsjk is
the value of φ0(p) in Equation (11) on the TDC segment
k. tmax

jk controls the life span of a TDC segment, beyond
which the TDC segment freezes and is no longer taken into
consideration in the diffusion. In all demonstrated results of
this paper, tmax

jk is set to 1 second.
To calculate the diffusion, we write the parametric equa-

tion for each TDC segment k as{
x = fjk(p)

y = gjk(p)
, p ∈ [pmin

jk , p
max
jk]. (12)

By substituting the parametric equation and the parameters
including Djk, φsjk and the segment age tjk into Equa-
tion (11), we get the diffusion result φjk(x, y, t) of the TDC
segment k through

φjk(x, y, tjk) =
1

4πtjkDjk

∫ pmax
jk

pmin
jk

[
φsjke

−
(x−fjk(p))2

4tjkDjk

e
−

(y−gjk(p))2

4tjkDjk ·
√
f
′
jk(p)2 + g

′
jk(p)2

]
dp.

(13)

The TDC density φj is defined as the sum of the TDC
segment density of all the segments contained in the TDC

φj =
∑
k

φjk. (14)

5.2 Density Modification
To incorporate the canvas texture in strokes, we implement
the granulation effect as follows. φjk and φj are first calcu-
lated and rasterized according to the display resolution. We
use the segment density φjk as the weights to calculate the
granulation opacity ωj of the j-th TDC through

ω̄j =

∑
k φjkωjk
φj

. (15)

And then we use the ω̄j and an underlying canvas texture
η(x, y) to modulate the density through

φ
′

j = [(1− ω̄j)η(x, y) + ω̄j]φj , (16)

where φ
′

j is the resulting density. As shown in Figure 5,
the amount of granulation can be adjusted on individual
segments. If ω̄j = 1, φ

′

j equals φj and the texture plays no
part in the density; if ω̄j = 0, φ

′

j equals η(x, y)φj and the
influence from texture reaches maximum. In this paper, we
use a gray-scale photo of a piece of paper as the canvas
texture η(x, y) which can be seen in Figure 3.

In order to achieve different styles of strokes, we design
three density modification functions shown in Figure 4 for
nonlinear brightness mapping. Hereinafter, we use φmod

j to
indicate the density of TDC j after modification. The first
density modification is the sigmoid function for uniform
coloring, where the density remains almost constant near
the stroke and drops sharply on edges,

φmod
j =

1

1 + e−
φ
′
j
−ξu1
ξu2

, (17)

where ξu1 affects the stroke width and ξu2 affects the rate of
density drop on edges. The next one is the power function
for the feathering effect, where the color of the curve fades
gradually from near to far,

φmod
j = (

φ
′

j

ξf1
)

ξf2

, (18)

where ξf1 affects the stroke width and ξf2 affects the chang-
ing speed of color. The last one is a Lennard-Jones potential
function for the edge darkening effect, where the density
rises abruptly at the edges of the curve,

φmod
j = ξd3((

ξd1
φ
′
j

)
6

− (
ξd2
φ
′
j

)
3

+ 1), (19)

1077-2626 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2929808, IEEE
Transactions on Visualization and Computer Graphics

6

Multi-layer Color MixingTDC Color Rendering

TDC

… … …

TDC Diffusion Stylized Density Active Layers

TDC

Integration

Density

Modification

Stroke

Colorization

Result

The Expired Layer

Canvas Texture

…

1st TDC Stroke

n-th TDC Stroke

j-th TDC Stroke

Fig. 3. A pipeline of the procedural stroke processing. The color rendering of a single stroke is divided into three steps. First, we calculate the TDC
diffusion based on the parameters of TDC segments and rasterize the results according to the display resolution. The diffusion results are then
modified towards stylization. Later, the stroke color is determined. Having the individual strokes updated, we use a multi-layer model to handle the
color mixing among strokes and the existing canvas.

Power FunctionSigmoid Function
Lennard-Jones

Potential Function

Fig. 4. Density Modification Functions

where ξd1 and ξd2 affects the width of dark edge and ξd3
affects the shade of the stroke color.

5.3 Stroke Colorization
Now we introduce the colorization of strokes based on TDC
density and colors. Given that each TDC segment has its
own color Csjk, we use the segment density φjk as the
weights to calculate the averaged color C̄sj through

C̄sj =

∑
k φjkC

s
jk

φj
. (20)

After density modification, φmod
j is clipped to [0, 1] and

is subsequently used to modify the opacity of C̄sj . In this
paper, we use the RYB color model [29] of 4 channels,
namely red, yellow, blue, and opacity. The stroke color Cj
of TDC j is

Crybj = (C̄sj)ryb,

Cwj = φmod
j (C̄sj)w,

(21)

where the superscript ryb represents the red, yellow and
blue channels and w the opacity channel.

5.4 Multi-layer Color Mixing
We use a multi-layer model to handle the color mixing
among strokes and the existing canvas, see Figure 3. We
first define a TDC as an expired TDC if all its segments’
ages tjk exceed tmax

jk ; otherwise, the TDC is active. Each
active TDC corresponds to an active layer in the multi-layer
model, and all expired TDCs are mixed into the expired

layer before they are excluded from the update. During the
update, the layers are sorted according to the drawing order
with the expired layer in front. Thus, we only consider the
mixing between two color layers, with the foreground color
being an active layer and the background color being the
intermediate mixing result of all the previous layers.

In this paper, we use two different color mixing formulas
from which artists can choose according to their needs, as
proposed by Sugita et al. [29]. The first one is the trans-
parency mix commonly used in computer graphics

Cα = αforeCfore + (1− αfore)Cback, (22)

where Cα is the result color, Cfore and Cback are the fore-
ground and background color respectively, and αfore ∈ [0, 1]
is the transparency. The second one is an approximate
mixing of real pigments

Cβ = Cfore + βforeCback, (23)

where Cβ is the mixing result and βfore ∈ [0, 1] is the mixing
parameter. Mixing using this method makes the resulting
color darker than both the foreground color and background
color.

When an active TDC expires, we delete the correspond-
ing active layer and mix its color into the expired layer.
The algorithm for one color-mixing iteration is listed in
Algorithm 2.

6 IMPLEMENTATION AND RESULTS

In this section, we present the implementation details and
some artworks created with our vector painting system.
We further offer comparisons against the finite-difference
solver and the DC method which proves that our method
is not only effective and efficient but also intuitive and
straightforward to use.

6.1 Implementation

We implemented our system using C++ and CUDA, with
the real-time rendering using OpenGL and the user interface
using Dear ImGui. We invoke a CUDA thread for each

https://github.com/ocornut/imgui

1077-2626 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2929808, IEEE
Transactions on Visualization and Computer Graphics

7

A B C D

E

G

F

I
M

K

N

H J

L

Fig. 5. The demonstration of strokes with different effects. (A) compares strokes using different diffusion coefficient (0.001, 0.003 and 0.005,
respectively). (B) displays strokes with varied granulation opacity (0, 0.25 and 0.5, respectively). (C) exhibits different stroke styles (including
uniform coloring, feathering and edge darkening, respectively). (D)(E) show the gradual change on different parameters along the stroke. (F)(G)
present the areal edge darkening effect. (I) exhibits strokes of different widths. (H)(K)(L) display the result of transparency color mixing and (J)(M)(N)
display the approximate color mixing of real pigments.

Algorithm 2: The framework of one color-mixing
iteration

input : The active layers, the expired layer and the
drawing order.

output: The background color.
1 Sort the color layers according to the drawing order

with the expired layer in front.
2 Set the background color as the first color layer.
3 for the i-th pixel (x, y) in parallel do
4 for the j-th active layer do
5 if the j-th TDC is expired then
6 Mix the j-th active layer into the expired

layer using Equation (22) or (23).
7 Delete the corresponding active layer.

8 for the j-th active layer do
9 Perform color mixing between this layer and

background using Equation (22) or (23).

screen pixel so all pixels can be updated in parallel. To
simplify the computation, a TDC segment only affects its
nearby pixels within distance djk = 0.5ljk+0.1W , where ljk
is the length of segment jk, W is the canvas width, and djk
is the distance between a pixel and the midpoint of segment
jk. Our system runs at a stable 60 FPS under 1024 × 768
resolution on a PC with an Nvidia Geforce GTX 1070 GPU

and Intel Core i7-7700K CPU. Meanwhile, we test the per-
formance of our system under 3940 × 2160 resolution and
show the runtime framerate changes in Figure 6. The system
runs above 30 FPS as long as the number of active TDC
segments does not exceed 180, which is more than enough
for painting purpose. Our system also provides powerful
editing functions by which we can insert or delete TDC
segments arbitrarily and modify all the parameters on each
TDC segment individually. When zooming in or out, the
display resolution remains unchanged and the performance
of our system is therefore unaffected.

The states of our system, including the positions of all
TDC segments and the relevant parameters, take very small
space for storage and can be easily saved to a file. When
reloading, we restore the painting session by redo all the
calculations, which is pretty fast thanks to the random-
access feature of our solver. For example, the painting Fig-
ure 11F, which contains 778 TDCs and 17917 TDC segments,
only requires 426.3KB to store in binary format and 0.138
seconds to reload to a 1024 × 768 canvas. The computing
time for recreating the entire paintings in this paper from
their TDC inputs is listed in Table 2.

6.2 Results and Comparisons
As demonstrated in Figure 5, our painting tool can easily
achieve multiple stroke styles, such as blurred edges, gran-
ulation, overlaid colors, etc. Using these effects, TDC can
be exploited for a variety of painting styles, including but

1077-2626 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2929808, IEEE
Transactions on Visualization and Computer Graphics

8

fr
am

er
at

e
/

F
P

S

time / min

0
30
60
90

120
150
180
210
240

0 5 201510 30 4025 35

Fig. 6. A TDC painting under 4K rendering resolution along with the framerate plot of the system during painting.

TABLE 2
Performance of TDC. This table lists the number of TDCs, the number

of TDC segments and the total computing time of the paintings
rendered to a 1024 × 768 canvas.

Result # TDCs # TDC segments Total Time
Figure 1 752 17065 0.142s
Figure 7 197 5523 0.051s
Figure 8 590 5228 0.044s
Figure 9 206 1696 0.015s
Figure 10 83 3780 0.036s
Figure 11A 479 13560 0.115s
Figure 11B 645 6938 0.066
Figure 11C 177 6033 0.061
Figure 11D 183 13617 0.091
Figure 11E 597 7769 0.067
Figure 11F 778 17917 0.138s
Figure 11G 431 14987 0.129s
Figure 11H 128 3723 0.035s

not limited to watercolor (Figure 1), flat style (Figure 7, 10),
sketch (Figure 11B) and ink wash painting (Figure 11E).
Figure 1 shows the painting session of a still-life artwork.

In this example, the workflow is fairly similar to the real-
life painting with brushes and papers where the artwork
is drawn layer by layer onto the canvas with abundant
color mixing and stroke combination. Figure 7 illustrates
a flat-style result created with our system, where the dif-
fusion process can be clearly noticed during the drawing
of each stroke. Continuous temporal feedback is usually a
desireable feature for painting systems since it can be very
helpful for artists to adjust their drawing shape on the fly,
and the temporal expressiveness of TDC enables satisfying
visual feedback once a stroke starts. Please refer to the
supplementary video to see more details on the temporal
evolution of the strokes. Figure 8 displays a TDC painting
using a combination of various stroke effects. In Figure 11
we show more painting results of our system.

Compared with the finite-difference method for solving
the heat equation, our method is free of numerical dis-
sipation, offers continuous solutions in both spatial and
temporal dimensions, can have random-access evaluations
at any given time and position, and keeps the computational
burden constant when zoom-in applied. Figure 9 demon-

1077-2626 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2929808, IEEE
Transactions on Visualization and Computer Graphics

9

(1) (2)

(3) (4)

Fig. 7. Flat-style painting created by temporal-evolving TDCs. The four images on the right show the zoomed-in evolution of a single stroke, with
the white curve being the TDC being drawn. In our system, the temporal expressiveness of TDC provides satisfying feedback once a stroke start
which allows artists to adjust their drawing shape on the fly. Please refer to the supplementary video to see the complete drawing progress.

strates a visual comparison between our method and the
finite-difference method, where both methods achieve simi-
lar results at 1024× 768 resolution but our method remains
sharp and displays more details when amplified 5 times.
In this example, the finite-difference diffusion requires 10
time steps and totally 2.248 seconds to compute, while our
method completes in 0.015 seconds.

As an extension of the DC method, our TDC solves
the heat equation, while DC solves the Laplace’s equation
which is essentially equivalent to the steady-state heat equa-
tion where time approaches infinity. In other words, TDC
is capable of modeling the temporal diffusion of strokes,
which is one of the biggest advantages of our method.
In contrast, when using DCs, the colors diffuse to infinity
until they are prevented by other DCs, which makes them
unsuitable for controlling stroke width. On the one hand,
our TDC method overcomes the inconvenience in drawing
by using strokes as the primitive to generate vector graphics.
As shown in Figure 10, when using DCs, artists need to
mark all the boundaries where colors are discontinuous.
This behavior contradicts human’s instinct and drawing
habits, resulting in a steep learning curve. In contrast, artists
can directly draw strokes with TDCs, which is consistent
with the real-life painting experience. On the other hand,
intersections of DCs usually result in undesired results. To
deal with this issue, artists need to break the curves and
change colors, which complicates the drawing procedure
significantly. TDC strokes, however, are able to intersect and
overlap arbitrarily accordant with artist’s intention. In addi-
tion, while zooming in, the DC using multi-grid solver is
necessary to confine the current viewport boundary values.
With our random-access solver, the diffusion result is only
determined by the pixel coordinates and the parameters
of the TDCs. There is no need to provide values on the
viewport boundary.

6.3 User Feedback
To evaluate the usability of our TDC painting system, we
invited professional artists to try our system and compare

it with the PVG software [16], the latest extension of the
DC method. After a 5-minute introduction to the basic
functions, artists were able to use our TDC painting tool
to draw Figure 7, 11A, 11B, 11F, 11G in half an hour and
Figure 1 in 50 minutes. On the contrary, we had to spend
more than 20 minutes introducing the basic theory and the
painting process of PVG in case the artists had not been
exposed to DC methods before, and the artists still needed
30 minutes to familiarize themselves with the complicated
software operations before painting.

Artists gave a high rating to our TDC painting system.
According to the feedbacks, the system is very easy to use
and stroke effects are more than enough for various styles
of artworks. Compared with the commonly used drawing
software Adobe Photoshop, our painting tool is much more
intuitive and convenient as we recreate the real-life painting
experience by modeling strokes directly while in Photoshop
user has to manage the layers manually. Meanwhile, our
system supports rendering at arbitrary resolution, thus the
artwork can be infinitely magnified during the painting
session without compromising sharpness or details.

7 CONCLUSION AND FUTURE WORKS

To meet the growing demand for digital artwork creation,
this paper presents a powerful, efficient and editable vec-
torized painting system which is capable of producing
convincing paintings of various genres. At the core lies the
Temporal Diffusion Curve, our novel stroke-based model
for modeling evolving vector graphics. By further integrat-
ing a procedural stroke processing function into the system,
we achieve a digital art creation tool that has quite a few
merits over the existing solutions. Being one of the vector
solvers, our method is able to render at arbitrary resolutions,
holds real-time performance regardless of the scale of the
art piece, and provides straightforward editing possibilities
on strokes both at runtime and afterward. Meanwhile, our
method also has advantages over the existing vector paint-
ing tools. Compared with the Diffusion Curve technique,

1077-2626 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2929808, IEEE
Transactions on Visualization and Computer Graphics

10

A

C

B

D

E

F

Fig. 8. A TDC painting using a combination of various stroke effects, including uniform coloring (A), feathering (B), edge darkening (C), granulation
(D), transparency color mixing (E) and approximate color mixing of real pigments (F).

(B)

5× zoom in

(A)

5× zoom in

Fig. 9. Comparison between the finite-difference method (A) and TDC (B). Using the same diffusion setup, TDC and the conventional finite-difference
method yield similar results. However, the TDC result is resolution independent and remains sharp after zooming in significantly.

our method not only supports reproducing the evolution
of strokes but also is more intuitive to use. Additionally, our
system is suitable for multiple styles of artworks as opposed
to DiVerdi et al. [8], which only offers watercolor in their
vector painting engine.

Our work still has much room for improvement. Al-
though this paper mainly focuses on reproducing the paint-
ing session on flat surfaces, many art forms, including the
oil painting, are famous for their intriguing 3D texture.
We would like to design a more advanced 3D procedural
model for this purpose in the future. Additionally, the TDC
diffusion has to be isotropic in this paper since the Fourier-
Transform-based diffusion solver cannot handle anisotropic
diffusion coefficients. Therefore, another future topic could
be seeking the fundamental solution of a less constrained
TDC formulation. Currently our work is mainly about mod-
eling of strokes, we would like to cover the automated

vectorization of images, a hot application of current DC
researches, in the future.

ACKNOWLEDGMENTS

This project was partially supported by NSFC Grants
(61872347, 61532002, 61672077), Special Plan for the De-
velopment of Distinguished Young Scientists of ISCAS
(Y8RC535018), USA NSF IIS-1715985, IIS-1812606, National
Key R&D Program of China (2017YFF0106407), CAS Key Re-
search Program of Frontier Sciences (QYZDY-SSW-JSC041),
Applied Basic Research Program of Qingdao (161013xx),
Capital Health Research and Development of Special (2016-
1-4011), Fundamental Research Funds for the Central Uni-
versities and Beijing Natural Science Foundation-Haidian
Primitive Innovation Joint Fund (L182016).

1077-2626 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2929808, IEEE
Transactions on Visualization and Computer Graphics

11

(A) (B) (C)

Fig. 10. Comparison of inputs and results among Diffusion Curve (PVG) [16] (A), our TDC method (B) and our TDC result with extra details (C).
The DC method uses region boundaries and auxiliary curves to determine the color and its variation. In contrast, TDC models the strokes directly,
which is much more consistent with the real-life painting experience using brushes and papers. Moreover, it is perfectly feasible to recreate the DC
results with TDC. Nevertheless, some results of our method, including the canvas texture, crossing strokes, color layers, and the temporal evolution,
are not trivial to implement with DCs.

REFERENCES

[1] C. J. Curtis, S. E. Anderson, J. E. Seims, K. W. Fleischer, and
D. H. Salesin, “Computer-generated watercolor,” in Proceedings
of the 24th Annual Conference on Computer Graphics and Interactive
Techniques. ACM Press/Addison-Wesley Publishing Co., 1997,
pp. 421–430.

[2] N. S.-H. Chu and C.-L. Tai, “Moxi: real-time ink dispersion in
absorbent paper,” in ACM Transactions on Graphics (TOG), vol. 24,
no. 3. ACM, 2005, pp. 504–511.

[3] N. S. H. Chu, “Expresii watercolor,” in ACM SIGGRAPH 2017 Appy
Hour. ACM, 2017, p. 1.

[4] Z. Huang et al., “A gpu-based method for real-time simulation of
eastern painting,” in Proceedings of the 5th International Conference
on Computer Graphics and Interactive Techniques in Australia and
Southeast Asia. ACM, 2007, pp. 111–118.

[5] Z. Chen, B. Kim, D. Ito, and H. Wang, “Wetbrush: Gpu-based
3d painting simulation at the bristle level,” ACM Transactions on
Graphics (TOG), vol. 34, no. 6, p. 200, 2015.

[6] T. Xia, B. Liao, and Y. Yu, “Patch-based image vectorization with
automatic curvilinear feature alignment,” ACM Transactions on
Graphics (TOG), vol. 28, no. 5, p. 115, 2009.

[7] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and
D. Salesin, “Diffusion curves: a vector representation for smooth-
shaded images,” in ACM Transactions on Graphics (TOG), vol. 27,
no. 3. ACM, 2008, p. 92.

[8] S. Diverdi, A. Krishnaswamy, R. Mech, and D. Ito, “A lightweight,
procedural, vector watercolor painting engine,” in ACM SIG-
GRAPH Symposium on Interactive 3d Graphics and Games, 2012, pp.
63–70.

[9] Z. Liao, H. Hoppe, D. Forsyth, and Y. Yu, “A subdivision-based
representation for vector image editing,” IEEE Transactions on
Visualization and Computer Graphics, vol. 18, no. 11, pp. 1858–1867,
2012.

[10] J.-D. Favreau, F. Lafarge, and A. Bousseau, “Fidelity vs. simplicity:
a global approach to line drawing vectorization,” ACM Transac-
tions on Graphics (TOG), vol. 35, no. 4, p. 120, 2016.

[11] J. C. Bowers, J. Leahey, and R. Wang, “A ray tracing approach
to diffusion curves,” in Computer Graphics Forum, vol. 30, no. 4.
Wiley Online Library, 2011, pp. 1345–1352.

[12] X. Sun, G. Xie, Y. Dong, S. Lin, W. Xu, W. Wang, X. Tong,
and B. Guo, “Diffusion curve textures for resolution independent
texture mapping.” ACM Trans. Graph., vol. 31, no. 4, pp. 74–1, 2012.

[13] M. Finch, J. Snyder, and H. Hoppe, “Freeform vector graphics with
controlled thin-plate splines,” in ACM Transactions on Graphics
(TOG), vol. 30, no. 6. ACM, 2011, p. 166.

[14] P. Ilbery, L. Kendall, C. Concolato, and M. McCosker, “Biharmonic
diffusion curve images from boundary elements,” ACM Transac-
tions on Graphics (TOG), vol. 32, no. 6, p. 219, 2013.

[15] S. Jeschke, “Generalized diffusion curves: An improved vector
representation for smooth-shaded images,” in Computer Graphics
Forum, vol. 35, no. 2. Wiley Online Library, 2016, pp. 71–79.

[16] F. Hou, Q. Sun, Z. Fang, Y.-J. Liu, S.-M. Hu, A. Hao, H. Qin,
and Y. He, “Poisson vector graphics (pvg),” IEEE Transactions on
Visualization and Computer Graphics, to appear.

[17] T. L. Kunii, G. V. Nosovskij, and T. Hayashi, “A diffusion model
for computer animation of diffuse ink painting,” in Computer
Animation’95., Proceedings. IEEE, 1995, pp. 98–102.

[18] T. Stuyck, F. Da, S. Hadap, and P. Dutré, “Real-time oil painting
on mobile hardware,” in Computer Graphics Forum, vol. 36, no. 8.
Wiley Online Library, 2017, pp. 69–79.

[19] P. Kubelka, “New contributions to the optics of intensely light-
scattering materials. part ii: Nonhomogeneous layers,” JOSA,
vol. 44, no. 4, pp. 330–335, 1954.

[20] T. Van Laerhoven and F. Van Reeth, “Real-time simulation of
watery paint,” Computer Animation and Virtual Worlds, vol. 16, no.
3-4, pp. 429–439, 2005.

[21] J. Stam, “Stable fluids,” in Proceedings of the 26th Annual Con-

1077-2626 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2929808, IEEE
Transactions on Visualization and Computer Graphics

12

A B

C E

F G H

D

Fig. 11. A gallery of artworks using our painting system.

ference on Computer Graphics and Interactive Techniques. ACM
Press/Addison-Wesley Publishing Co., 1999, pp. 121–128.

[22] P. Blaškovič, “Rebelle: real watercolor and acrylic painting soft-
ware,” in ACM SIGGRAPH 2016 Appy Hour. ACM, 2016, p. 3.

[23] R. Ďurikovič and Z. Pálenı́ková, “Real-time watercolor simulation
with fluid vorticity within brush stroke,” in 21st International
Conference Information Visualisation (IV). IEEE, 2017, pp. 158–163.

[24] S. Xu, X. Mei, W. Dong, Z. Zhang, and X. Zhang, “Interactive
visual simulation of dynamic ink diffusion effects,” in Proceedings
of the 10th International Conference on Virtual Reality Continuum and
Its Applications in Industry. ACM, 2011, pp. 109–116.

[25] B. Baxter, V. Scheib, M. C. Lin, and D. Manocha, “Dab: Interactive
haptic painting with 3d virtual brushes,” in Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive Techniques.
ACM, 2001, pp. 461–468.

[26] W. Baxter, J. Wendt, and M. C. Lin, “Impasto: a realistic, interactive
model for paint,” in Proceedings of the 3rd international symposium on
Non-photorealistic animation and rendering. ACM, 2004, pp. 45–148.

[27] S. DiVerdi, “A modular framework for digital painting,” IEEE
Transactions on Visualization and Computer Graphics, vol. 21, no. 7,
pp. 783–793, 2015.

[28] L. Onural, “Impulse functions over curves and surfaces and their
applications to diffraction,” Journal of Mathematical Analysis and
Applications, vol. 322, no. 1, pp. 18–27, 2006.

[29] J. Sugita and T. Takahashi, “Paint-like compositing based on ryb
color model,” in ACM SIGGRAPH 2015 Posters. ACM, 2015, p. 83.

Yingjia Li received his BS degree in applied
physics from Beihang University in 2017. He is
currently a MS student at State Key Laboratory
of Virtual Reality Technology and Systems, Bei-
hang University. His research interests include
data vectorization and physics-based fluid simu-
lation.

1077-2626 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2929808, IEEE
Transactions on Visualization and Computer Graphics

13

Xiao Zhai received his BS degree in computer
science and engineering from Beihang Univer-
sity in 2013. He is currently a PhD candidate
at State Key Laboratory of Virtual Reality Tech-
nology and Systems, Beihang University. His re-
search interests include physics-based fluid sim-
ulation, data-driven fluid animation, and all the
relevant topics in computer graphics.

Fei Hou received his PhD degree in computer
science from Beihang University in 2012. He is
currently a research associate professor of Insti-
tute of Software, Chinese Academy of Sciences.
He was a Postdoctoral researcher at Beihang
University from 2012 to 2014 and a research
fellow in School of Computer Science and Engi-
neering, Nanyang Technological University from
2014 to 2017. His research interests include ge-
ometry processing, image-based modeling, data
vectorization, medical image processing, etc.

Yawen Liu received her BA degree in indus-
trial design from Jingdezhen Ceramic Institute in
2015. She is currently a UI designer at Beijing
Piesat Information Technology Co., Ltd.

Aimin Hao received his BS, MS, and PhD de-
grees in computer science at Beihang University.
He is a professor in School of Computer Sci-
ence and Engineering, Beihang University and
the associate director of State Key Laboratory of
Virtual Reality Technology and Systems. His re-
search interests include virtual reality, computer
simulation, computer graphics, geometric mod-
eling, image processing, and computer vision.

Hong Qin received his BS and MS degrees in
computer science from Peking University, and
his PhD degree in computer science from the
University of Toronto. He is a professor of com-
puter science in Department of Computer Sci-
ence at Stony Brook University. His research
interests include geometric and solid modeling,
graphics, physics-based modeling and simula-
tion, computer-aided geometric design, human-
computer interaction, visualization, and scientific
computing. Currently, he serves as an associate

editor for The Visual Computer, Graphical Models, and Journal of Com-
puter Science and Technology. He is a senior member of the IEEE and
the IEEE Computer Society.

