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Abstract

In this paper, we present a new strategy, a joint deep learning architecture, for
two classic tasks in computer graphics: water surface reconstruction and water
image synthesis. Modeling water surfaces from single images can be regarded as
the inverse of image rendering, which converts surface geometries into photore-
alistic images. On the basis of this fact, we therefore consider these two problems
as a cycle image-to-image translation and propose to tackle them together
using a pair of neural networks, with the three-dimensional surface geome-
tries being represented as two-dimensional surface normal maps. Furthermore,
we also estimate the imaging parameters from the existing water images with
a subnetwork to reuse the lighting conditions when synthesizing new images.
Experiments demonstrate that our method achieves an accurate reconstruction
of surfaces from monocular images efficiently and produces visually plausible
new images under variable lighting conditions.
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1 INTRODUCTION

Water surface modeling has always been an intriguing but tricky subject in computer graphics and computer vision.
Some researchers achieved accurate results with professional capturing devices.1,2 However, their methods are difficult to
reproduce in daily life due to the necessity of delicate setups. Another possible solution is to use the shape-from-shading
(SFS) technique to recover water surfaces from videos,3,4 but this does not handle highlights and occlusions well and
brings geometric distortions. Machine learning–based methods5–8 have shown promising progress in three-dimensional
(3D) reconstruction and depth estimation recently. Moreover, some machine learning–based fluid simulators have also
been developed.9,10 Strongly inspired by these most recent works, we advocate seeking novel strategies for water surface
reconstruction using the machine learning approach.

Photorealistic rendering of water contents is another complicated topic. Although many successful techniques have
been developed in the film industry, they are usually computationally demanding because the intrinsic optical proper-
ties of water are sophisticated and could lead to various lighting effects. Kallweit et al.11 proposed to tackle a similar
problem, rendering atmospheric clouds, by synthesizing the high-order scattering with neural networks. Comparably, we
also utilize a deep learning method in this paper to achieve the fast synthesizing/rendering of wave images.

Given the apparent inverse relation of the above two goals, we propose a joint network architecture to efficiently handle
water surface reconstruction and water rendering together instead of solving them separately (see Figure 2). Conceptually,
our multitask learning framework includes a forward surface estimation net and a backward surface rendering net, which
is very similar to the work on cycle image-to-image transformation.12 To reuse the lighting situation from the source
images in the rendering process, we further employ an extra subnetwork to encode the imaging parameters in the forward
part and exert those parameters on the backward part. The inverse relation of the two parts is exploited to expedite the
learning process of each other and improve overall robustness. With the joint network trained, our work makes estimating
fluid geometries and editing fluid images/videos possible in real time.

The main contributions of this paper are

1. a method to simultaneously estimate water surface geometries and the imaging parameters from a single image,
2. an image synthesizing function to apply lighting conditions on water surfaces without the physics-based modeling,

and
3. a joint learning paradigm to solve the correlative 3D reconstruction and image synthesizing tasks on fluids in

conjunction.

2 RELATED WORK

The topic of this paper is closely related to fluid surface reconstruction, the rendering of fluid contents, and image-to-image
translation. In this section, we briefly review them in the following categories.

Fluid surface reconstruction is challenging due to the fact that fluids are often transparent and are hard to cap-
ture directly. Some researchers employed camera arrays to capture the fluid surface through its optical properties.1,2 The
constraints on consistency or physics13,14 can also be exploited for this purpose using optimization-based methods.

These methods are relatively accurate but difficult to carry out without expensive devices or delicate setups. To overcome
the drawback, some works have focused on surface estimation from monocular videos via SFS. Li et al.4 and Yu and
Quan3 acquired water surface from videos combining SFS with the shallow water model and the Stokes wave model
correspondingly. Similarly, Eckert et al.15 reconstructed the density and motion of smoke based on monocular videos by
resorting to physical constraints. Such methods are, overall, easier to proceed, but the results are also relatively inaccurate
and error prone, especially when dealing with surface occlusions and highlights. Recently, Xie et al.9 have taken advantage
of machine learning to reconstruct high-resolution fluid details from low-resolution velocities or vorticities. In this paper,
we seek a new strategy to reconstruct water geometry from a monocular RGB image through deep learning.

Photorealistic rendering of fluids dates back to the work of Fournier and Reeves.16 Tessendorf 17 presented a
sophisticated lighting model for a realistic reproduction of ocean waves, whereas Ashikhmin et al.18 and Premoze and
Ashikhmin19 presented a light transport approach for the complex lighting effects of the ocean. However, the tradi-
tional physically based rendering is time consuming and impractical for real-time applications. Hu et al.20 and Schneider
and Westermann21 studied real-time water surface rendering, whereas Bruneton et al.22 accelerated the rendering by
hardware and incorporated more sophisticated lighting models, such as reflection, refraction, and the Fresnel term.
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To avoid the computationally demanding requirements, the most recent research studies have adopted data-driven
approaches to synthesize images. Kallweit et al.11 proposed a neural network framework to render the atmospheric clouds.
Nalbach et al.23 used convolutional neural networks to synthesize ambient occlusion, illumination, and other effects in
screen space. Kato et al.24 also adopted a neural 3D mesh renderer in which a simple ambient light and directional light is
used without shading. These machine learning methods achieved plausible results much more efficiently than traditional
renders. Similarly, in this paper, we propose a network to function as a renderer given surface geometries and lighting
conditions.

Image-to-image translation has made plentiful progress since the seminal work by Goodfellow et al.25 Isola et al.26

proposed the pix2pix framework, which uses the conditional generative adversarial network (cGAN)27 to learn a map-
ping from input to output images. However, this method relied on paired data for supervised learning. To avoid this
prerequisite, CycleGAN,12 DiscoGAN,28 and DualGAN29 were designed following the cycle consistency for training using
unpaired data. These series of methods have been proven effective in various tasks, such as collection style transfer, object
transfiguration, season transfer, and generating photographs from sketches.30 Motivated by them, we learn the two-way
mapping from water images and their corresponding surface geometries, with forward mapping reconstructing the water
surfaces and backward mapping synthesizing photorealistic images of waves. Moreover, we include a subnetwork in our
framework to extract and reuse the lighting conditions from existing images.

3 METHOD

In this paper, we propose a deep learning method to reconstruct water surfaces and synthesize water images. A multi-
task cycle network based on image-to-image transformation is designed for these two tasks. This section introduces the
network architecture and details the involved formulation in our method.

3.1 Method overview
Our model, illustrated in Figure 1, is an end-to-end cycle deep learning framework. The two ends are respectively the RGB
water images and the normal maps with imaging parameters, including the viewpoint, light position, etc. The whole cycle
network consists of a forward estimation network E and a backward rendering network R. Specifically, the estimation net
E, taking a single color image as input, produces a normal map and the imaging parameters accordingly; the backward
net R, which is essentially a renderer, synthesizes the water image according to the input normal map and the imaging
condition.

The detailed overview of our network is illustrated in Figure 2. Both the forward net E and the backward net R contain
an encoder–transformation–decoder structure for image-to-image translation. Additionally, to reuse the lighting condi-
tions of existing images, a Sub-Net 2 for extracting imaging parameters is included in E. This subnetwork shares features
from the encoding block and captures the exact imaging parameters in a one-dimensional vector through a convolution
layer, a pooling layer, and two linear layers. To conveniently insert the extracted lighting conditions into R without further
interpreting the imaging parameters, we regard the two-dimensional (2D) feature before the linear layers as the repre-
sentation of imaging parameters. This 2D feature can be appended directly to the intermediate feature of R due to the
compatible dimensionality. E and R can be used together or individually. However, due to the extraction and application
of imaging parameters, the training process of E net R would influence each other. Therefore, the whole network needs
to be trained jointly.

Normal Map

Imaging 
Parameters

Estimating net

Rendering net

E

R

RGB Image

FIGURE 1 The sketch of our cycle network
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FIGURE 2 Network architecture. Our network includes a forward estimating net E and a backward rendering net R, both based on the
encoder–transformation–decoder structure. The estimating net E also includes a Sub-Net 2 for extracting imaging parameters to reuse the
lighting conditions in the backward rendering pass of net R

3.2 Formulation
Our goal is to learn the two-way mapping functions between two domains, namely, a set of RGB images {ci} and a set
of normal maps {ni} with imaging parameters {pi}. To achieve this, we design appropriate loss functions to measure the
performance of the learned mappings.

The generative adversarial network proposed by Goodfellow et al.25 contains two components, the generator and the
discriminator, where the generator mimics the images from the provided data set, whereas the discriminator tries to spot
the generated fakes. Through competing against each other, the generator could learn the intrinsic distribution and gives
improving results. Essentially, the discriminator plays the part of the loss function in the training process. However, this
configuration guarantees no convergence toward the desired direction and could lead to unpredictable results. In contrast,
the cGAN is proposed to learn a mapping from the observed image and random noise vector to the target, which solves
the above problem. In addition, cGANs penalize the joint configuration of the output, whereas the L1 and L2 losses treat
the output space as “unstructured” in the sense that each output pixel is considered conditionally independent from all
others. Hence, we build our model based on cGAN.

In our formulation, the forward network E and the backward network R are two generators, and their corresponding
discriminators DE and DR are used for binary classifying the generated images. Therefore, we have n̂i, p̂i, p̂2D

i = E(ci), and
ĉi = R(ni, p̂2D

i ), where ĉi, n̂i, p̂i represent the inferred ci,ni, pi through networks and p̂2D
i is the aforementioned 2D feature.

The subscript i is omitted hereinafter for brevity.
Normal loss. The discriminator DE is used to measure the high-level consistency between the ground truth n and the

generated normal n̂. At the same time, the per-pixel cosine similarity, which is the dot product31 when the vectors are
normalized to the unit l2-norm, is also evaluated. The normal loss LN is therefore defined as

Lcos(E) = En,n̂[1 − cos(n, n̂)],
LcGAN(E,DE) = Ec,n̂[log(1 − DE(c, n̂))] + Ec,n[log DE(c,n)],

LN = 𝜆Lcos(E) + LcGAN(E,DE),
(1)

where 𝜆 is the weight of Lcos(E).
Image loss. The generated images ĉ need to be as approximative as possible to the ground truth c and to exhibit the

same distribution of the domains given training samples. However, it is well known that the L1 and L2 losses are prone
to produce blurry results on image generation problems.26 Although these losses fail to encourage high-frequency crisp-
ness, they are able to capture the low frequencies efficiently in most cases. In contrast, a generative adversarial network
discriminator is capable of modeling high-frequency structures accurately but at a high computation cost. To optimize
our networks, we follow the work of Isola et al.,26 which relies on the cGAN discriminator DR and an L1 term to enforce
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high-frequency and low-frequency correctness, respectively. The image loss LI is therefore defined as

L1(R) = Ec,ĉ[||c − ĉ||1],
LcGAN(R,DR) = En,c[log DR(n, c)] + En,ĉ[log(1 − DR(n, ĉ))],

LI = 𝛼L1(R) + LcGAN(R,DR),
(2)

where 𝛼 is the weight of L1(R).
Lighting loss. The estimated imaging parameters should be consistent with the ground truth. For easy problems where

this is the case, we do not need a loss function more complicated than L1 to enforce coherence. Thus, the lighting loss
LParam can be defined as

LParam = Ep,p̂[||p − p̂||1]. (3)

Although the estimated p̂ is not involved in the synthesis directly, it enforces the 2D feature p̂2D to encode the essential
imaging information, including the viewpoint and light position.

Universality loss. The parameter feature p̂2D applied to the rendering net should be independent of surface geometry.
To ensure this, in every training pass, p̂2D is applied to render an extra normal map n′ that has not been exposed to the
forward net E into image ĉ′ = R(n′, p̂2D). The universality loss L′

I is employed, comparing ĉ′ with the ground-truth image
c′, as

L′
1(R) = Ec′,ĉ′ [||c′ − ĉ′||1],

L′
cGAN(R,DR) = E

′
n′,c[log DR(n′, c′)] + En′,ĉ′ [log(1 − DR(n′, ĉ′))],

L′
I = 𝛽L′

1(R) + L′
cGAN(R,DR),

(4)

where 𝛽 is the weight of L′
1(R).

Full objective. Our full objective is

L(E,R,DE,DR) =𝛾LParam + LN + LI + L′
I , (5)

where 𝛾 controls the importance of lighting loss. We aim to solve the following optimization to train the network and
achieve the optimal results E∗ and R∗:

E∗,R∗ = argmin
E,R

max
DE,DR

L(E,R,DE,DR). (6)

In all the experiments of this paper, 𝜆, 𝛼, 𝛽, and 𝛾 involved in our equations are set to 10.

4 EXPERIMENT

To evaluate the proposed method, we implemented the network and trained it with simulated data. This section
documents the details of the data set generation, the network setup, and the training procedure.

Generation of data sets. Considering the fact that collecting paired water images and surface geometries in high
definition is difficult in real life, we use an existing fluid simulator and renderer22 to produce data demanded as the ground
truth. Our data set includes all inputs for training purposes, namely, the images of water surfaces, the corresponding
surface normal maps, and the imaging parameters, captured from various camera viewpoints and lighting directions.
The imaging parameters are simplified to a five-dimension vector, with three dimensions for the lighting direction, one
dimension for viewpoint height, and one dimension for viewing angle. In some circumstances, the water surface is not
enough to fill the entire image, and sky appears in the images. In this case, we mask the sky instead of cropping the
images. Figure 3 enumerates some typical examples in our data set. Our data set has 450 paired items, among which 400
are randomly selected as the training set and the rest as the test set.

Network setup. Our forward Sub-Net 1 and backward network contains three convolutions, several residual blocks,
and three deconvolutions. The forward Sub-Net 2 following the encoding block includes a convolution layer, an average
pooling layer, and two linear layers. The details of the network are demonstrated in Figure 4. All generators and discrim-
inators use modules of the form convolution-InstanceNorm-ReLu, except for the last layers that uses tanh activation. We
use six Resnet blocks for 256 × 256 training images. For the discriminator networks, we use 70 × 70 PatchGANs,12,26

which distinguish real or fake images using 70 × 70 patches instead of the full 256 × 256 image. Such a patch-level dis-
criminator has fewer parameters to train and could be easily applied to arbitrarily sized images in a fully convolutional
fashion.
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FIGURE 3 Data examples. Each item consists of two pairs of the water images and the corresponding surface normal maps with the same
imaging parameters. In case that sky appears in the image, we mask the sky instead of cropping the image
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Full connection

Normal
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FIGURE 4 A full description of the networks. The part on top and the part on the bottom are the forward network and the backward
network, respectively. On the left are the details of the Resnet block

Training procedure. If the joint network is trained from scratch, the parameter features produced by the forward
network E could be pretty random noise, which is not much meaningful for the backward network R. Therefore, we
split the training process into two phases. First, the E net was trained with LN on its own for 50 epochs; afterward, the
joint network was trained with L(E,R,DE,DR) for another 200 epochs. We alternated the gradient descent steps on the
discriminators and the generators, which is commonly seen for training GANs. During this process, the Adam solver with
a batch size of 1 was applied. All networks were trained with a constant learning rate of 0.0004 until epoch 50 of the joint
network training (phase 2), after which the learning rate was linearly dropped to zero over the final 150 epochs.

5 RESULTS

This section and the Supplementary Video provide the results of our method and the comparisons against the baseline
methods, including pix2pix26 and CycleGAN.12 The influences of several loss terms are also studied by comparing the
full loss function versus its variants. Additionally, we provide examples of reconstructing real-life water photos with our
network.
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TABLE 1 The time statistics of training and inferring

Method pix2pix (Reconstruction) pix2pix (Synthesis) CycleGAN Our method

Training (hr) 3.2 4.0 11.5 6.3
Testing (ms) 5.9 6.2 19.6 16.7

We implemented the network using Python 3.6 with pyTorch 0.4.0 and performed the training/testing for this paper
using a Windows 10 personal computer with an Intel Core i7-6700 CPU, an NVIDIA GeForce GTX1080 GPU, CUDA 9.0,
and cuDNN 7 installed. The time for training and inferring is listed in Table 1.

Water surface reconstruction. Several examples of surface reconstruction using the previous pix2pix, CycleGAN,
and our method can be seen in Figure 5, with the 3D surface reconstructed from normals using the work of Agrawal et al.32

Simultaneously, 3D results reconstructed from SFS are shown as well. Our method achieves slightly better results
than pix2pix (see Supplementary Video) since the cosine similarity Lcos is more suitable to evaluate normal maps than
the L1 loss in pix2pix, whereas CycleGAN fails to render satisfactory results and handles the sky mask erroneously due
to the lack of supervision. SFS achieves the worst results in all methods, especially in the highlights.

We measure the performance of predicted normals with the same metrics as in the work of Eigen and Fergus33: the mean
and median angle from the ground truth across all pixels, as well as the percentage of vectors whose angle falls within
three thresholds. We also quantize the 3D surface errors with diversified metrics.31 The results are shown in Table 2. Our
model performs similarly or slightly better than pix2pix and substantially outperforms CycleGAN.

Water image synthesis. We apply our backward network and previous works, pix2pix and CycleGAN, to synthesize
water images on the test data set. The results are shown in Figure 6. Again, our method is able to accurately reproduce
the scene, whereas CycleGAN fails to generate correct results. Moreover, pix2pix also produces the water geometries,

Ground TruthInput pix2pixCycleGAN Our Method
0         0.5        10         0.5        10         0.5        1 0           1          2

0           2          4

0           1          2

SFS

FIGURE 5 A comparison of the water surface reconstruction (including the surface normal and the surface geometry). The reconstructed
surfaces are color coded according to the error from ground truth. In this comparison, our approach and pix2pix achieve comparably
accurate results, whereas CycleGAN fails to offer satisfactory reconstruction. The shape-from-shading (SFS) method has the least accurate
results, especially in the highlights

TABLE 2 The quality measurements of reconstructed normals and three-dimensional
(3D) surface against the ground truth

Method Normals 3D surface
Angle distance (◦) Within t◦ deg. (%) Height distance
Mean Median 5◦ 10◦ 15◦ abs rel sqr rel RMSE

SFS – – – – – 0.573 0.335 0.397
CycleGAN 13.69 9.74 26.0 50.1 70.9 0.485 0.188 0.266
pix2pix 7.17 5.99 41.1 72.2 89.9 0.214 0.038 0.113
Our method 6.78 5.57 43.7 75.3 91.7 0.190 0.032 0.100

Note. RMSE = root-mean-square error; SFS = shape-from-shading method.
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Ground TruthSurface Geometry pix2pixCycleGAN pix2pix-8DLighting Source Our method

FIGURE 6 A comparison of the image synthesis using different lighting conditions and geometries. Our approach achieves photorealistic
water images with correct lighting. In contrast, CycleGAN handles the sky mask and lighting erroneously, whereas pix2pix is capable of
accurately recovering the water geometries. However, despite being trained with the imaging parameters, pix2pix-8D still cannot reproduce
the lighting correctly

TABLE 3 The quality measurements of
rendering image

Method MSE PSNR MAE SSIM

CycleGAN 3272 13.2 36.7 0.28
pix2pix 3671 13.2 36.0 0.32
pix2pix-8D 3575 13.8 37.2 0.25
Our method 1314 18.2 18.2 0.55

Note. MSE = mean-squared error; PSNR = peak
signal-to-noise ratio; MAE = mean absolute error;
SSIM = structural similarity index.

but the lighting conditions are beyond its capability to recover. To further demonstrate the effectiveness of reusing the
lighting conditions, we append the five-dimension imaging parameters to the three-channel normal map and use the new
eight-dimension feature as the input of pix2pix. After retraining, the lighting conditions still cannot be correctly captured
by this classic method (tagged as pix2pix-8D). In comparison, our subnetwork approach to extract and reuse lighting
conditions has no issue under all the tested combinations of surfaces and imaging parameters. Furthermore, we measure
the performance of images synthesized by the above methods, as shown in Table 3, where our method outperforms others
in all the metrics.

Lighting controllability. Due to a novel subnetwork designed for reusing imaging parameters, we can synthesize
the water image with variable light sources, which cannot be achieved straightforwardly by pix2pix or CycleGAN. The
examples of reusing the lighting conditions are provided in Figure 7.

Loss function. We compare our full loss against its several variants (see Figure 8). Training without LcGAN makes the
results substantially blurry. On the other hand, if Lcos is removed, some degradations in reconstructing highlight areas
can be noticed. We also try removing universality loss L′

I , as displayed in Figure 9. In this situation, the lighting is not
completely separated from the geometries by the subnetwork and cannot be safely reused in synthesizing new images.
We therefore conclude that all the losses are critical to our network.

Reconstruction from real photos. We further test our trained surface reconstruction network on real water photos
and achieve better results than the well-known SFS method, as shown in Figure 10, although some errors still occur in
the highlight regions. Being data driven, the performance of our method depends largely on how well the training set
represents the actual application scenario. Tailoring our method to a particular kind of water or specific waveforms is
thus relatively easy, provided that enough training data are available.
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FIGURE 7 Examples of lighting controllability. The surface normal (bottom left) is rendered using lighting extracted from different images
(top row). Equipped with this function, our method offers a viable editing tool for water images and videos

Input Ground Truth Without LcosWithout LcGAN Full Loss

FIGURE 8 Comparison among various variants of the loss function. The result trained without LcGAN is substantially blurry. Without Lcos,
some deviations in the highlight areas can be noticed, marked with red boxes

Ground TruthSurface Geometry Without Lighting Source Full Loss

(e)(d)(b) (c)(a)

FIGURE 9 Rendering with or without the universality loss L′
I . Without L′

I , the lighting is not completely separated from the geometries
and cannot be safely reused to synthesize new images
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Our MethodReal Photos SFS

FIGURE 10 Reconstruction of surface normals and geometries from real photos with our method and the shape-from-shading (SFS)
method

6 CONCLUSION

We have presented a novel approach for two tasks, monocular water surface reconstruction and realistic synthesis of water
images, by building a multitask deep learning network based on the cyclic bilateral translation between water images and
surface geometries with imaging parameters. Abundant experimental results validate that our method is both visually
plausible and computationally efficient. The key and novel ingredient of our method is the subnetwork for extracting
and applying imaging parameters, which makes the image synthesis flexible. We further improve the performance using
other techniques, for example, adding universality loss to make the estimated parameters independent of geometries.
Moreover, our method could be regarded as a viable solution for content editing on fluid images and videos. The source
code is available at https://github.com/XueguangXie-BUAA/Water-Surface-Reconstruction-and-Image-Synthesis.
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