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Fluid Simulation with Adaptive Staggered Power
Particles on GPUs
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Abstract—This paper extends the recently proposed power-particle-based fluid simulation method with staggered discretization, GPU
implementation, and adaptive sampling, largely enhancing the efficiency and usability of the method. In contrast to the original
formulation which uses co-located pressures and velocities, in this paper, a staggered scheme is adapted to the Power Particles to
benefit visual details and computing efficiency. Meanwhile, we propose a novel facet-based power diagrams construction algorithm
suitable for parallelization and explore its GPU implementation, achieving an order of magnitude boost in performance over the existing
code library. In addition, to utilize the potential of Power Particles to control individual cell volume, we apply adaptive particle sampling
to improve the detail level with varying resolution. The proposed method can be entirely carried out on GPUs, and our extensive
experiments validate our method both in terms of efficiency and visual quality.

Index Terms—physically based modeling, fluid simulation, power diagrams, GPU parallelization, adaptive sampling.

F

1 INTRODUCTION AND MOTIVATION

F LUID motion is highly complex to reproduce in com-
puter applications, game/film productions, and has

gained much attention in the computer graphics community
during the recent two decades. Modern fluid simulators
are capable of generating vivid waves, splashes, bubbles,
etc. However, the exact incompressibility continues to be
challenging for most fluid simulators to date. As discussed
in Ihmsen et al. [1], while Lagrangian methods preserve
mass perfectly, the oscillations in density evaluation affect
the particle volume, requiring further correction such as
Implicit Incompressible Smoothed Particle Hydrodynamics
(IISPH) [2]. On the other hand, incompressible Eulerian
methods assume a rest density and compute a divergence-
free velocity field, yet the mass fluctuations [3], [4] may lead
to volume changes and possible artificial viscosity [5].

Hybrid methods that integrate the advantages of both
have long been explored, such as the popular Particle-In-
Cell (PIC) and FLuid Implicit Particle (FLIP) which were
first adopted in [6] to simulate sand and later used to simu-
late liquids with abundant surface details [4], [7], [8], viscos-
ity treatment [9], and multiple-phase setting [10]. Raveen-
dran et al. [11] proposed to use SPH particles with an under-
lying Eulerian grid for pressure projection. These methods
usually combine the Eulerian divergence-free solver and
the Lagrangian material particles to minimize the impacts
brought by either and to ensure the preservation of both
density and mass.

De Goes et al. [12] recently presented Power Particles
for incompressible fluids, which resort to power diagrams
for domain partition on the basis of the particle distribution
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(hence called power particles). Despite its fully Lagrangian
nature, their method makes use of a divergence-free solver
as well as a precise volume control on particles to en-
force strong incompressibility. Nevertheless, some limita-
tions could still be found in this powerful method. First of
all, the pressure solver of the Power Particles calculates the
velocity divergence using co-located pressures/velocities
and one-ring divergence operator. This could cause strong
negative pressure near free surfaces and prevent the for-
mation of individual sprays. The co-located scheme also
brings a large number of non-zero entries into the Pressure
Poisson Equation (PPE). Speed being a major impediment
to the adoption of the Power Particles scheme, the original
method fails to enjoy the GPU acceleration since few efforts
have been made to construct power diagrams on modern
GPUs. Moreover, despite Power Particles’ potential to con-
trol individual cell volume, dynamic particle sampling still
remains unexplored.

Accordingly, this paper is dedicated to resolving the
aforementioned weaknesses within the existing power-
particle-based fluid simulator. As opposed to the co-located
scheme and one-ring divergence operator, we adapt the
staggered discretization to the power-particle framework
and apply the divergence condition using directional ve-
locity perpendicular to cell borders. Such an arrangement
not only eliminates the unwanted cluster behaviors but also
reduces the non-zero entries of the PPE to a large extent.
Regarding the construction of power diagrams, previous
methods usually resort to the existing code libraries like
CGAL [13] or VORO++ [14] for robustness and efficiency.
Instead, we propose a novel facet-trim method which en-
ables the parallelized construction on GPUs. We also apply
adaptive particle sampling at run time to simulate fluid
details up to different scales in various regions. Our exten-
sive experiments prove that Power Particles produce better
visual results with higher efficiency when using the stag-
gered discretization and adaptive sampling. Additionally,
the GPU-based implementation offers a significantly faster
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construction of power diagrams over the VORO++ library
and tremendously enhances the performance of the fluid
simulator, enabling its availability for designing, modeling,
and other interactive applications.

The main contributions of this paper are:

• A staggered pressure projection on Power Particles
to benefit visual details and computing efficiency;

• A GPU-based construction of power diagrams to
boost the computational performance by an order of
magnitude; and

• An adaptive sampling strategy for Power Particles to
simulate fluids using varying resolution.

2 BACKGROUND AND RELATED WORKS

The topics of this paper cover the particle-based methods,
grid-based methods, hybrid methods, Voronoi-based meth-
ods as well as the adaptive techniques in fluid simulation.
In this section, we briefly review them in the following
categories.

SPH techniques. Owing to its conceptual simplicity and
ability to generate compelling visual results, SPH [15] has
become one of the most popular fluid solvers nowadays.
Such popularity is attributed partially to its kernel-based na-
ture which brings decent trade-off between computational
expenses and realism for unstructured methods. However,
one of the drawbacks is its weakness in enforcing the
incompressibility. Early works used the equation of state to
calculate the interior pressure [16], [17], which often induced
instabilities. Later on, iterative methods [18], [19] started to
dominate as they greatly ameliorated the problem by using
a dynamic stiffness. Recently, researchers managed to solve
the PPE implicitly [2], and both the density and the velocity
divergence were taken into account in some state-of-the-art
solvers [20]. On the other hand, SPH stress points [21] and
staggered SPH method [22] solved the tensile instabilities
and improve boundary handling, using the staggered ar-
rangement in a similar way to this paper.

Methods using staggered grids. In early Computational
Fluid Dynamics, the decoupling of pressure and velocity
was found in Cartesian grids inducing non-physical os-
cillations, also known as the checkerboard problem. The
staggered grid [23] was designed to eliminate such problem
and was later widely applied in grid-based fluid simulators,
e.g., the octree approach [24]. The irregular grids also benefit
from the staggered primal-dual formulation (or Discrete
Exterior Calculus) in fewer non-zero entries in the Lapla-
cian, smaller grid interval and simpler boundary handling.
The tetrahedral meshes were naturally integrated with the
staggered discretization [25] to simulate various phenom-
ena, and the dynamic semi-structured [26] and unstructured
tetrahedral grids [27] were also employed. Based on these,
Mullen et al. [28] proposed an energy-preserving integration
that was viscosity-free and time-reversible.

Hybrid methods. It is a tempting attempt to integrate
two methods to neutralize each other’s defect and produce
more convincing results. Being one of these attempts, FLIP
was employed to simulate sand [6], viscous fluids [9], multi-
phase fluids [10] and so on. Hong et al. [29] and Ando
et al. [7], [30] put forward adaptive FLIP to drop the
computational burden, and Ferstl et al. [31] came up with

Narrow Band FLIP eliminating excess particles far beneath
the surface. Moreover, FLIP was combined with IISPH [32]
for a much more flexible usage. In addition to these FLIP-
family methods, Losasso et al. [33] coupled SPH and particle
level set to model the diffuse regions and dense liquid
volume respectively. Raveendran et al. [11] proposed to
employ a coarse Eulerian grid to provide a divergence-free
background velocity and to use SPH interaction to counter
the local density fluctuation. Chentanez et al. [34] simulated
large-scale water phenomena by further combining parti-
cles, 3D grids and height fields, from fine to coarse.

Voronoi-based approaches. The Voronoi-based spatial
discretization is relatively new in the fluid simulation ter-
ritory because the non-stationary nature of fluids often
requires frequent updates of Voronoi diagrams which are
fairly time-consuming. Sin et al. [35] implemented a fluid
solver and performed staggered pressure projection based
on Voronoi diagrams. Brochu et al. [36] integrated a surface
tracking process with Voronoi diagrams to capture thin
features. English et al. [37] glued uniform grids of different
resolution together with Voronoi diagrams. Power diagram,
a generalization of Voronoi diagram with more control over
the cell volume, was adopted to simulate bubble interac-
tions in foam [38] as well as to build a fully functional
fluid simulator [12]. It was also incorporated into a Sparse
Paged Grids simulator to yield high-resolution adaptive
liquids [39]. Most recently, meshless Voronoi is realized on
GPUs [40], but neither the generalization to power diagram
nor the possible adaptivity has been thoroughly studied. In
this paper, we improve the existing fluid simulator of de
Goes et al. [12] towards better visual result and efficiency.

Adaptivity in fluid simulation. Although the adaptive
octree scheme in Eulerian methods [24], [39] is quite intu-
itive, the adaptivity is often difficult to be implemented with
SPH as the insertion or deletion of particles could cause
sudden large spring force, let alone the intricacy brought by
non-uniform smoothing radii. Adams et al. [41] adjusted
particle positions and the smoothing radii to reduce the
pressure error, while Keiser et al. [42] simulated the inter-
action across particle resolutions. Zhang et al. [43] provided
an early attempt of adaptive sampling for SPH on GPUs.
To prevent the previously mentioned sudden changes in
force, Orthmann and Kolb [44] introduced temporal blend-
ing to achieve a smooth transition from before to after the
particle insertion or deletion, and Winchenbach et al. [45]
further developed implicit temporal blending and achieved
infinite continuous adaptivity. Alternatively, different levels
of detail can be simulated independently and coupled on
the common boundaries [46], [47].

3 OVERVIEW OF POWER PARTICLES

This section provides a brief introduction of the power
diagram and the original Power Particles solver, followed
by an overview to highlight our main distinctions from the
existing method.

3.1 Power Diagram

A power diagram [48] is a partition of the spatial domain Ω
according to a set of sites {qi} along with their associated
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scalar weights {wi}, as shown in Figure 1. Each cell Vi is
defined as

Vi = {x ∈ Ω | ‖x− qi‖2−wi ≤ ‖x− qj‖2−wj ∀j}, (1)

where ‖·‖ is the Euclidean distance. Two neighboring sites
qi and qj share a facet Aij , which should be perpendicular
to vector qi − qj . We denote Vi as the volume of Vi in 3D
(area in 2D) and Aij as the area of Aij (length in 2D). The
distance between two neighboring sites qi and qj is denoted
as lij , while the distance from a site qi to its facet Aij is dij ,
thus lij = dij + dji.

𝐪𝑖

𝐪j

𝒜𝑖𝑗
the cell of interest

one-ring neighbors

two-away neighbors

other cells

Fig. 1. Exemplary power diagram in 2D.

Aurenhammer et al. [48] pointed out that the volume
of cells can be fully controlled by their power weights.
Therefore the volume of each cell can be constrained to
a target value V̄i. We use the same weight optimization
scheme as [12] to iteratively update the weights towards
direction δw following

1

2
∆δw = V − V̄ , (2)

where ∆ij = Aij/lij .

3.2 Power Particles

The Power Particles method is a Lagrangian fluid solver
whose particles are treated as the sites of a time-evolving
power diagram. In each time step, the power diagram
is updated according to the particles’ locations and their
corresponding weights, based on which the dynamics of
fluids is calculated following the Navier-Stokes equation,

Dv
Dt

= −∇p
ρ

+ ν∇2v + fext, (3)

where v denotes the velocity of particles, p their pressure, ρ
the density, ν the kinematic viscosity, fext the body accelera-
tions, D

Dt the material derivative, ∇ the gradient and ∇2 the
Laplacian. With the velocity determined, the particles are
advected as all Lagrangian methods do. An algorithm that
specifies such procedure is listed in Algorithm 1.

In each simulation iteration, the splitting strategy is
applied for integration. The diffusion term and the external
forces in the Navier-Stokes equation are first solved, giving
an intermediate velocity v∗ to each particle,

(1− ν∆t∇2)v∗ = vt−1 + ∆tfext, (4)

Algorithm 1: The simulation loop of Power Particles.

1 Apply diffusion and external forces;
2 Apply pressure projection on power diagram;
3 Advect particles;
4 Update the power diagram and enforce volume

constraints;

where vt−1 is the initial velocity of each particle and ∆t
the duration of the time step. Subsequently, the pressure
projection solves the PPE, i.e.,

∆t

ρ
∇2p = ∇ · v∗, (5)

where∇· is the divergence operator. The velocity is updated
afterwards by

vt = v∗ − ∆t

ρ
∇p, (6)

where vt is the resulting velocity used to advect the flow. In
the previous Power Particles, de Goes et al. [12] proposed
to use discrete divergence operator D, gradient operator G
and Laplacian operator L in calculating the fluid dynamics,
where D = ∇qV , G = −DT and L = Ddiag(m)−1G. Using
the co-located discretization, D corresponds to the matrix:

Dij := (∇qj
Vi)

T =
Aij

lij
(qj − bij)

T ,

Dii := (∇qi
Vi)

T = −
∑
j∈Ni

(∇qi
Vj)

T ,
(7)

where bij denotes the centroid of facet Aij and Ni the set
of one-ring neighboring particles of i. For more information
about the power diagram or the original Power Particles,
please refer to [12].

3.3 Overview of Our Method

In this paper, we make improvements in three aspects: inte-
grating staggered discretization in pressure solve, designing
a parallel power-diagram construction algorithm, and in-
corporating the adaptive particle sampling. The framework
of our method is illustrated in Algorithm 2. Essentially
different from the original Power Particles (Algorithm 1),
our method is not only GPU friendly but also much faster
and visually pleasing on CPU, and can produce even bet-
ter surface details with lower computational cost with the
adaptivity turned on.

Algorithm 2: The simulation loop of our method.

1 Apply diffusion and external forces;
2 Apply staggered pressure projection on power

diagram (Section 4);
3 Advect particles;
4 Apply adaptive particle sampling (Section 6);
5 Update the power diagram on GPUs (Section 5) and

enforce volume constraints;

The original Power Particles, in a fairly straightforward
manner, use co-located pressure/velocity samples, one-ring
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discrete divergence/gradient operators D and G, and two-
away Laplacian operator L. In the pressure step, the velocity
is projected to achieve zero divergence, i.e. Dvt = 0. Given
D is a one-ring operator, this zero divergence is enforced
as an inter-particle velocity condition. However, it could
lead to unnatural behaviors near free surfaces. As illustrated

advectionprojection

staggered Power ParticlesPower Particles sampled velocityair ghost particles

Fig. 2. The handling of parting particles using Power Particles and our
staggered Power Particles.

in the top row of Figure 2, when nearby surface particles
move apart from each other, the pressure projection would
exert strong negative pressures to eliminate the relative
movement between particle pairs in order to meet the zero-
divergence condition. This causes particle clusters instead
of individual sprays to form on disturbing surfaces.

The IISPH method of Ihmsen et al. [2], similar to the
Power Particles, also used one-ring divergence and two-
away Laplacian operator in their pressure solver. They
reported this particle clustering as well albeit that they
corrected the predicted density to a target value ρ0 rather
than enforced the zero-divergence condition directly. The
predicted density ρadvi is calculated as

ρadvi = ρi −∆tρi∇ · vi, (8)

where ρi denotes the SPH density evaluation and ∇ · vi the
velocity divergence. In other words, not only the underes-
timated SPH density but also the diverging particles could
result in the drop of ρadvi and then the consequent negative
pressures. They referred to this artifact as “exaggerated
cohesion effects” that noticeably absorbed the splashes, but
failed to offer a fundamental solution other than clamping.

The Power Particles are free of underestimated particle
density, however, the velocity divergence could still cause
the clustering problem. In this paper, we present to use
the staggered discretization to address this unnatural clus-
tering on diverging particles. With this treatment, the zero
divergence is no longer enforced with neighboring particle
velocities but with directional velocities sampled at cell
borders. The projection still makes the velocity field free of
divergence but at the same time keeps the surface particles
their tendency to form individual sprays in case of negative
pressure, see Figure 2. Additionally, with the co-located
scheme, the multiplication of large sparse matrices D and
G is rather time-consuming, especially for GPU realization
where the runtime speed matters a lot. Ihmsen et al. [2]
proposed to bypass this multiplication by using a two-
pass matrix-free method to solve the PPE, notwithstanding
the nested two-away stencil still significantly increases the
number of non-zero entries in the system. In contrast, the
staggered scheme offers one-ring Laplacian operator which
removes the necessity to multiply the large sparse matrices
or to access the two-away neighbors, making the pressure
projection cheaper to solve. It should be noted that the

staggered discretization is only employed in the pressure
projection, while in other steps the velocity is still sampled
at the particles for convenience.

The construction of power diagrams, which is the foun-
dation of Power Particles, is a well-studied spatial par-
titioning problem. Both the weight Delaunay triangula-
tion, like CGAL [13], and the local cell-based method, like
VORO++ [14], were extensively adopted for this task previ-
ously. However, those efforts failed to exploit modern GPUs
for parallelization. Meanwhile, the update of the underly-
ing structure is usually the most time-consuming step in
the simulation loop. Therefore, we propose a GPU-based
algorithm, specialized for fluid simulation, to construct the
power diagram in parallel. To better enjoy the GPU paral-
lelism, our new algorithm constructs power diagrams in a
local facet-based fashion which differs from the local cell-
based VORO++, see Figure 3.

A great variety of adaptive sampling techniques have
been presented in the field of fluid simulation. Among
them, the recent one from Winchenbach et al. [45] is rather
spectacular due to its decent effectiveness and excellent
performance. Although this scheme is originally designed
for SPH, we adopt its idea of particle classification and the
(n+1):n particle merging strategy in Power Particles. We get
rid of the data dependencies in the original method and
eliminate the atomic operations to fit GPU implementation.
Besides, some minor modifications to the particle classifica-
tion also help it fit into the Power Particles as we desire.

4 PRESSURE PROJECTION USING STAGGERED
DISCRETIZATION

Pressure solve is normally the most expensive step in incom-
pressible fluid simulators. Previously, the Power Particles
assemble the one-ring divergence and gradient operators
to achieve the two-away Laplacian. However, the pressure
projection with co-located scheme could cause unnatural
particle clusters and is expensive to solve, as discussed in
Section 3.3.

To improve, we make use of the staggered discretiza-
tion previously seen in octree [24], tetrahedral [26], [27],
hybrid [25] and Voronoi [35] solvers. Essentially, this
scheme defines the divergence and gradient as facet-
particle/particle-facet operators instead of particle-particle
operators. Therefore the nested Laplacian becomes particle-
facet-particle style rather than the particle-particle-particle
form. The details of the staggered pressure solver are speci-
fied in Section 4.1, while Section 4.2 presents the boundary
handling of our method.

4.1 Staggered Pressure Projection

Starting with the intermediate particle velocity v∗ after the
non-pressure forces applied, we first assume the staggered
velocity v∗ij , namely the directional velocity perpendicular
to each facet Aij of the power diagram, is constant within
the facet, and calculate it using a linear interpolation as

v∗ij =
dijv∗j + djiv∗i

lij
· n̂ij , (9)
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where n̂ij = (qj − qi)/
∥∥∥qj − qi

∥∥∥ is the normal vector of
facet Aij . We then define the divergence of a particle cell
following the divergence theorem as

(∇ · v∗)i =
1

Vi

∑
j∈Ni

Aijv
∗
ij , (10)

where Vi is the volume of the i-th particle cell and Ni

denotes the set of one-ring neighboring particles of i. Mean-
while, the scalar pressure gradient of a facet is written as

(∇p)ij =
pj − pi
lij

, (11)

and the Laplacian operator can be assembled in a one-ring
operator as

(∇2p)i = (∇ · ∇p)i

=
1

Vi

∑
j∈Ni

Aij(∇p)ij

=
1

Vi

∑
j∈Ni

Aij

lij
(pj − pi).

(12)

Equation 10 and 12 are substituted into the PPE (Equation 5)
to form the resulting linear system to solve. Although this
Laplacian operator ∇2 shares a very similar form with the
finite-volume Laplacian ∆ in the volume constraints, it is
still compatible with the divergence and gradient opera-
tor under staggered discretization. Besides, this Laplacian
operator is also used in the diffusion calculation, namely
Equation 4.

With the pressure solved, the directional pressure gradi-
ents on facets can be calculated through Equation 11. How-
ever, since the power cells are usually irregularly shaped, to
evaluate the pressure gradients at particles is not so intuitive
as interpolation. We propose to minimize the objective func-
tion below to recover the vector pressure gradients (∇p)i on
particles:

arg min
(∇p)i

∑
j∈Ni

((∇p)i · n̂ij − (∇p)ij)2. (13)

Essentially, this objective function calculates an average
vector influenced by all the facets related to qi, and its
solution on each cell is obtained by solving the equivalent
3× 3 equation locally:

(
∑
j∈Ni

n̂ij n̂T
ij) (∇p)i =

∑
j∈Ni

((∇p)ij n̂ij). (14)

This vector conversion from facets to particles shares an
essentially similar least-squares fitting approach with the
tetrahedral/Voronoi solvers [27], [49]. Although it does not
perfectly match the interpolation from particles to facets,
our experiments on the kinetic energy demonstrate that the
artificial viscosity it brings is rather negligible, see Figure 14.
Finally, the particle velocity is updated using Equation 6.

Equipped with the staggered scheme, Power Particles
are free from the particle clustering artifact and are ca-
pable of generating more abundant ricocheting splashes
with higher efficiency, please see the comparisons on visual
results in Figure 8, 11 and on performance in Section 7.2.

Our pressure projection is similar to the staggered
Voronoi method from Sin et al. [35] in the definition of cell

divergence (Equation 10) and facet gradient (Equation 11).
The major difference lies in the conversion of vectors be-
tween particles and facets. In their work, velocities and
pressure gradients on particles are calculated using smooth-
kernel-based fitting and moving least-squares fitting respec-
tively. These are common techniques to define continuous
vector fields based on sample points, but they inevitably
induce numerical damping. To alleviate this problem, we
replace their back-and-forth vector conversions with linear
interpolation (Equation 9) and local least-squares fitting
(Equation 14) defined on power diagrams. A comparison in
our experiments demonstrates that the decrease in numer-
ical damping with our modification is quite noticeable, see
Figure 12. Besides, we apply a different boundary handling
strategy with solid particles and ghost air particles, which
will be explained in Section 4.2. There are also some minor
distinctions between the two methods, e.g., we apply the
viscosity implicitly in Equation 4 while they ignore the
viscous term completely in their solver, we merge their two-
step Laplacian calculation into one operator (Equation 12)
to slightly decrease memory accessing time, and we do not
use cell volumes as weights in PPE since the substantially
varying volumes in power diagrams could affect the con-
vergence of solution via iterative methods.

4.2 Boundary Handling of Our Method

Boundary handling usually plays an indispensable role
in fluid simulation. Our approach supports two kinds of
boundaries: solid boundary and free surfaces. Specifically,
we dynamically sample solid particles as the symmetrical
mirror of the fluid particles through the solid boundaries at
run time to clip the power diagrams according to the exact
boundary shape, see Figure 4. These clipping particles do
not have pressure values and are excluded in the PPE. They
do not have power weights either since the solid shape is
already known. For solid-fluid coupling at facet Ais, the
boundary flux Aisvs is included in the divergence of fluid
particle i in Equation 10, where vs denotes the velocity of
the moving boundary along the normal direction n̂is of facet
Ais.

For free surfaces, ghost particles are adopted for fluid-air
interaction. These particles are populated around the fluid
particles in each time step, clipping the fluid power cells
on the outer layer and fulfilling the free-surface boundary
condition. They are excluded from the PPE since the incom-
pressibility of these cells is less meaningful. Though they
hold no determined velocity or pressure, they offer these
values in a ghost-fluid fashion [50] at run time. For example,
when a ghost particle qg is accessed through facet Aig ,
its pressure is defined as pg = −(dgi/dig)pi and velocity
vg = vi. Furthermore, their power weights are set uniformly
to offer a good boundary reference to other particles.

5 PARALLEL POWER DIAGRAM CONSTRUCTION

Without doubt, the construction of power diagram is the
most computationally intensive and time-consuming step
in the power-particle simulation. Previous works usu-
ally resort to existing libraries, such as CGAL [13] or
VORO++ [14], for robust implementation of power diagram
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(a)

(c) (d)

(e)

(b)

Fig. 3. The VORO++ style cell-based method (a-b-e) and our facet-based method (a-c-d-e) to construct power diagrams. (a) All particles are mapped
to an auxiliary grid for the accelerated neighborhood search; (b) For each particle i (the orange dot), the corresponding power cell is constructed
by sequential cell cuts from nearby sites; (c) For particle i the nearby sites within a maximum radius rm are found, and the possible facets from all
site pairs (qi,qj) are generated; (d) The possible facets are used to trim each other in parallel; (e) The remaining facets are collected to form the
power cells.

Fluid particles Solid boundary particles Air ghost particles

Fig. 4. A 2D example of power-particle spatial partition during fluid
simulation. The solid particles are calculated as the symmetrical mirror
of fluid particles through the exact boundary, while ghost particles are
populated around the free surface to clip the cells on the outer layer.

construction on CPUs. However, the algorithms are not ad-
equate to parallelize. Instead, we propose a parallel power
diagram construction algorithm and implement it on GPU
to accelerate the construction significantly. We first elaborate
the ideas of our algorithm in Section 5.1 and then some
details of implementation in Section 5.2.

5.1 The Algorithm of Power Diagram Construction
Employing a local strategy in the construction of power dia-
grams, VORO++ treats every particle cell Vi individually by
iterating through all of its neighboring particles and repeat-
edly cutting the cell using the possible weighted planesAij .
This idea requires repeatedly updating polyhedral cells with
the number of facets and vertices unpredictable beforehand,
however, this is extremely time-consuming on GPUs. In
contrast to the cell-based method of VORO++, our method
constructs all the facets first and assembles power cells with
the corresponding facets afterwards. This strategy not only
avoids the expensive dynamic memory management but

also takes full advantage of memory coalescing in every
parallel step to maximize the power of multi-threading.

Our construction is also founded upon the fact that in
fluid-simulation circumstance any two neighboring fluid
particles should be close enough to some extent, or they
should be separated by other fluid cells or ghost solid/air
cells. As a result, the possible neighbors of a site are confined
to a surrounding narrow spatial range.

Algorithm 3: GPU-based power diagram construction.

input : weighted sites (q, w), maximum spacing rm
output: power cells V

1 Insert boundary/ghost particles;
2 Set up the auxiliary grid for neighborhood search;

/* allocate possible facets */
3 for the i-th site in parallel do
4 for the j-th neighboring site within the radius of rm do
5 Generate possible facets Âij ;

/* trim facets */
6 for the possible facets Âij in parallel do
7 for the possible facets Âik, k 6= j do
8 trim Âij with Âik;

/* collect facets to form cells */
9 for the i-th site in parallel do

10 for the possible facets Âij do
11 Collect Âij as Aij if Aij > 0;

12 Form the power cell Vi;

Our algorithm to construct power diagrams can be seen
in Algorithm 3 and Figure 3. First of all, the boundary/ghost
particles are sampled on fluid-solid or free boundaries
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to clip the power diagrams. Inspired by the index-sort
neighborhood search widely used in VORO++ and various
SPH methods [1], our method also utilizes an underlying
uniform grid for efficient particle accessing. With this aux-
iliary grid established, all sites within a grid cell are placed
continuously in the array and can be accessed efficiently
in a coalesced manner by GPUs. For each site qi, after
finding all nearby sites within a maximum spacing rm, we
generate its possible facets Âij from all possible site pairs
(qi,qj). These possible facets are then used to trim each
other, and during this process, some may be nullified if they
are completely eliminated by other possible facets. Finally,
the remaining facets Aij are collected as the faces of the
local power cell. Please see our supplementary video for an
animated illustration of the power construction.

5.2 Details of Implementation

Compared with the cell-cut operation in VORO++, our
facet-trim process circumvents the dynamic memory man-
agement, which is difficult to handle for GPUs, by allocat-
ing memory for all possible facets Âij in advance before
the generation and trimming. However, this pre-allocation
scheme consumes much more memory than enough since
the exact amount to store the valid facets can hardly be
predicted beforehand, and may easily exhaust all on-chip
GPU memory when millions of particles are simulated
simultaneously. To cope with this problem, the power cells
are not computed all at once, but batch by batch. In each
iteration, a batch of particles is processed through the steps
of generating possible facets, trimming facets and forming
power cells (line 3 - line 12 in Algorithm 3), then the memory
buffers are refreshed for the next batch. The sequential
construction of power cells in VORO++ can be seen as a
special case where the batch size equals to 1, while the
typical batch size used in our implementation is 10k to
offer a balance between memory overhead and calculation
expense.

Within the construction process, the most time-
consuming step is the facet trimming whose time com-
plexity is O(nk2), while both allocating possible facets and
collecting facets have the complexity of O(nk), where n
denotes the total number of fluid cells and k the average
number of possible facets for each cell. The complexity
of trimming appears to be unacceptable at first glance.
However, if we allocate a GPU thread for each possible facet,
the complexity on each thread is only O(k). In addition,
the GPU memory coalescing further substantially decreases
the accessing cost during computation. Meanwhile, a rea-
sonable choice of rm is crucial to keep the computational
cost low while maintaining the accurate construction of the
power diagram. In our experiments, rm is empirically set
as twice the largest particle diameter and k never exceeds
128, hence the time complexity of these three steps can be
assumed to have a linear upper bound. Other components
like ghost particle insertion or neighborhood search are
commonly seen in most SPH solvers and are extremely fast
when implemented properly on GPUs.

6 ADAPTIVE PARTICLE SAMPLING

This section covers the adaptive sampling strategy for dy-
namically adjusting the particle size and distribution dur-
ing simulation. We draw inspiration from Winchenbach et
al. [45] and propose an adaptive sampling method for Power
Particles free of atomic operations and data dependencies.
Illustration examples for both 3D and 2D can be found
in Figure 5 and Figure 4. Section 6.1 introduces the sizing
function we use as well as the particle classification process,
followed by the particle splitting and merging strategy in
Section 6.2 and Section 6.3 respectively.

6.1 Particle Classification

The most interesting parts of fluid flows lie in the vicinity
of free surfaces and should be simulated with the finest
resolution, while far beneath the boundary the subtle fluid
movement is less noticeable to human eyes. Winchenbach
et al. used Level-set functions to calculate the SPH particles’
distance to free surfaces. In Power Particles, however, the
air boundaries are well specified, therefore we approximate
the distance to surface di in a cheaper flood-fill fashion
di = min(dj) + lij , j ∈ Ni, where the particles near free
surfaces have di = 0 initially. We then use a sizing function
to figure out a reference volume V ref

i for each fluid particle,

V
ref
i = min(

h+ di
dmax , 1)V max, (15)

where h is the diameter of the finest particle and dmax

controls the field of interests beyond which the reference
volume is constantly set as V max. In all demonstrated exper-
iments, dmax is set to 16h and V max is set to 16h3. Particles
are classified according to the ratio of their volumes to the
reference volumes V rel

i = Vi/V
ref
i into following categories,

Ci =


T V rel

i < 0.5
S 0.5 ≤ V rel

i < 1.5
O 1.5 ≤ V rel

i < 4
L 4 ≤ V rel

i

, (16)

depending on which they should be split, merged or left
intact: L-class particles are too large and should split into
smaller ones while T -class particles are tiny and are likely
to be merged and deleted; S-class and O-class particles
have appropriate volume, but S-class particles are relatively
smaller so they can receive more when a nearby particle is
merged, while O-class particles are left intact.

6.2 Particle Splitting

When a particle is categorized as L-class, it splits into
several smaller particles which have equal volume and are
distributed within the original cell. In our implementation,
an L-class particle i is split into ni = min(bVi/V optc , 8)
particles, where b·c is the floor function. Note that we set
8 as the upper limit of ni only for coding feasibility. If a
newly allocated particle is categorized as L-class again, it
can be further split in the following time steps. For each ni,
we use a pre-computed pattern (see Figure 6) as sites for
new particles, and the volume and velocity of new particles
are Vnew = Vi/ni and vnew = vi, accordingly.
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Fig. 5. A 3D example of the particle adaptive sampling with the cells color-coded according to their volumes. From left to right: 36k uniform particles,
70k particles with adaptivity, 147k uniform particles. The example of 70k particles with adaptivity manages to achieve similar surface resolution as
the 147k uniform example while maintaining a coarse particle distribution beneath the surface.

Fig. 6. The pattern used to split the orange particle into the blue sites.

Scattering Merging

Particle
Picking

Gathering
&

Merging

𝑇-class particles𝑆-class particles that are receiving volume𝑆-class particles

Fig. 7. Previous merging strategy should use atomic scattering oper-
ations and would contradict the data dependencies if the merging is
applied at once, while ours uses gathering instead and is thread-safe.

6.3 Particle Merging

T -class particles are too fine for their local resolution and
therefore can be merged into their neighborhood. Inspired
by Winchenbach et al. [45], we accomplish the merging
in an (n+1):n pattern, where T -class particles are removed
and their volumes are evenly divided and scattered to the
neighboring S-class particles. However, when parallelized,
this approach has two main drawbacks. First, if several
T -class particles share one S-class neighbor, the divide-
and-scatter operation towards this target should be atomic,
which is totally feasible but not efficient on GPUs. Second,
simply removing all T -class particles at once may contradict
data dependencies and cause problems, see the top row of
Figure 7. During the merging procedure, when one T -class
particle is removed, its neighboring T -class particles should
also receive their shares of volume just like S-class particles
do. Yet in the previous method, these T -class particles are
removed simultaneously, which induces the faulty distribu-
tion of fluids.

To correct these drawbacks, we set a restriction that T -
class particles should not be next to each other, see the

bottom row of Figure 7. By doing so, T -class particles do
not have to transfer volume to other T -class particles which
are removed simultaneously. Besides, we can eliminate the
atomic operations by using the S-class particles to gather
their shares from neighboring T -class particles rather than
applying the divide-and-scatter operations.

In terms of implementation, we determine a subset of
T -class particles that is unconnected. This is equivalent to a
graph coloring problem which is NP-hard to find an optimal
solution. Nonetheless, we are not attempting to seek the
perfect solution, but only to work out a fast and convenient
one suitable to be solved on GPUs. We propose to use a
simple random picking method iteratively to determine the
subset, as shown in Algorithm 4. In each pass, particles
are randomly picked and tested, and those without T -
class neighbors are combined into the target subset. Those
candidates who are not categorized as T -class particles
after several passes are tagged as S-class for receiving
volume during the particle merging. This picking strategy
is extremely fast on GPUs, and the small particles which
miss all the passes can be further merged in the upcoming
time steps. The picking probability ppick and number of
passes npass can be increased to allow quicker adaption, but
values too high would undermine the chance of finding the
unconnected candidates (line 6 in Algorithm 4), thus making
the picking less effective. In our experiments, 10 passes of
random picking with 0.1 probability is used.

With T -class particles satisfying the unconnected restric-
tion, the i-th S-class particle can update its volume, position
and velocity using a volume-weighted average as

V new
i = Vi +

∑
j∈Ni∩PT

Vj
nj
,

qnew
i =

1

V new
i

(Viqi +
∑

j∈Ni∩PT

Vj
nj

qj),

vnew
i =

1

V new
i

(Vivi +
∑

j∈Ni∩PT

Vj
nj

vj),

(17)

where PT denotes the selected subset of T -class particles
and nj is the surrounding S-class particles count of the j-th
T -class particle. Finally, the merged particles are removed
from the simulation.

7 EXPERIMENTAL RESULTS

In this section, we validate our method through experi-
ments and comparisons. The visual results are presented in
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Algorithm 4: Picking valid T -class particles.
input : a set of candidate T -class particles Pcand,

picking probability ppick, number of passes
npass, two empty sets PT and Ptemp

output: unconnected T -class particles PT
1 k = 0;
2 for k < npass do
3 Empty Ptemp;
4 Randomly pick particles from Pcand into Ptemp

under probability ppick;
5 for the i-th particle in Ptemp in parallel do
6 if qi has no neighbors in Ptemp and PT then
7 PT = PT ∪ {qi}

8 k = k + 1;

9 Pcand = Pcand − PT;
10 Tag particles within PT as T -class;
11 Tag particles within Pcand as S-class;

Section 7.1, while the quantitative analysis and discussion
are provided in Section 7.2. We compared the proposed
method with the pressure projection from Sin et al. [35] as
well as the original Power Particles [12] based on our own
implementation. All of our experiments were implemented
by CUDA C/C++ (staggered methods) or by OpenMP and
VORO++ [14] (staggered methods and co-located methods)
and were tested on a PC with an Intel Core i7-6700k
CPU and an Nvidia Geforce GTX1070 graphics card. The
visual results were achieved by extracting fluid surfaces
through Marching Cubes and offline rendering with Cycles
in Blender.

To test the capabilities of our method and to make com-
parisons, we build several scenarios, including a colliding
spheres scenario (Figure 8), a dam break scenario (Figure 9),
a colliding fountains scenario (Figure 10), a sphere drop sce-
nario (Figure 11), a double dam break scenario (Figure 12), a
wave generator (Figure 13) and a rotating vortices scenario
(Figure 14). All of these test cases were simulated within a
cube whose edge length was set to 1m and the acceleration
of gravity g = 9.8m/s2. Furthermore, the timesteps for low-
resolution (< 100k particles) and high-resolution (≥ 100k
particles) examples are 0.004s and 0.001s respectively to
limit the CFL number α = ∆tmax‖v‖

h no greater than 1, where
h is the diameter of the finest particle.

7.1 Visual Results

Figure 8, 9, 10 and 11 juxtapose the visual renderings using
our proposed staggered Power Particles and the original
Power Particles. Similarities in the overall water movement,
at a glance, can be found; however, the proposed approach
is capable of yielding results with finer features and more
details on free surfaces. In the colliding spheres scenario
(Figure 8), two water balls collide towards each other in
a zero-gravity space. Our staggered Power Particles gen-
erate a substantially greater amount of sprays during this
collision, while the original Power Particles suffer severely
from the particle clustering problem and fail to form highly
detailed sprays even if the viscosity is set to zero. In the

colliding fountains scenario (Figure 10), two columns of
water collide to form splashes. As it drops onto the ground,
the water sheet starts to wobble shortly after its formation
(see the accompanying video) due to the perturbation in
dynamics, where the original Power Particles wobble much
more frequently than the proposed staggered method. In
the sphere drop scenario (Figure 11), a water ball plummets
to calm water, creating a crown-like splash and then some
water spikes. Noticeably, our method manages to produce
more abundant ricocheting droplets in contrast to particle
clusters with the original Power Particles.

In Figure 9 and 11, the same scenarios are simulated with
low-resolution and high-resolution examples. Similar fluid
motion can be observed, with the high-resolution examples
standing out with detailed surface behaviors. Besides, we
incorporate the adaptive particle sampling method in Fig-
ure 10 and 11, which allows the simulation using merely
half the particles to achieve the same visual results as the
full resolution examples without noticeable difference.

To test the ability of our method in handling large-scale
simulation, we use 1 million staggered Power Particles in
the double dam break scenario as shown in Figure 12. We
also compare our pressure projection method against the
one from Sin et al. [35] under this setting since both meth-
ods share a similar staggered discretization. In comparison,
their method displays more numerical damping while ours
generates more highly detailed water sheets and splashes.
For solid-fluid coupling, a moving wall is used in Figure 13
to periodically push the water in the tank, resulting in a
desirable breaking-wave effect.

7.2 Quantitative Analysis and Discussion
Numerical Viscosity. In staggered Power Particles, the re-
covery of velocity gradients from facets to particles (Equa-
tion 14) does not perfectly match the interpolation from
particles to facets (Equation 9), hence the conversion could
give rise to numerical viscosity. Figure 14 demonstrates
an example of four rotating vortices in a unit cube. After
1000 timesteps, both the proposed method and the original
Power Particles maintain the vortices well with a very
similar decay of kinetic energy with or without the viscosity.
This result offers strong evidence that the numerical viscos-
ity brought by the staggered discretization, particularly the
unmatched velocity conversion, is rather negligible.

Performance. Owing to the GPU implementation, our
method gains significant performance boost compared with
the CPU-based Power Particles. The speedup of power
diagrams construction lays a good foundation for the fluid
simulator since updating the underlying spatial partition
has always been the most time-consuming part. A speed
comparison is conducted across several scenarios and the
results are shown in Table 1 and Figure 15, where the
data indicate that our method outperforms the original
method over 10 times. We also implement our method
on CPU to test the minor speed gain brought solely by
the staggered discretization, which mainly influences the
speed of pressure calculation. With the achieved speedup,
the time cost of high-resolution Power Particles is cut from
days to hours, while the low-resolution simulation with the
proposed method could even serve as the preview demo for
interactive designing or similar applications.
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Fig. 8. The rendered results of the colliding spheres scenario under different kinematic viscosity (ν = 0, 1e−3 and 1e−2, respectively) with 60k
staggered Power Particles on the left and 60k Power Particles on the right. Particle clusters are formed with Power Particles due to negative
pressure on surfaces, while the staggered Power Particles are free from this artifact, creating abundant tiny splashes in the simulation.

Fig. 9. The rendered results of the dam break scenario. From left to right: 18k staggered Power Particles, 147k staggered Power Particles, 147k
Power Particles. In this test, the 147k staggered Power Particles is roughly 14 times faster than the 147k Power Particles.

Fig. 10. The rendered results of the colliding fountains scenario. From left to right: 320k staggered Power Particles, 165k adaptive staggered Power
Particles, 320k Power Particles. In this test, the 320k staggered Power Particles and 165k adaptive staggered Power Particles are respectively 8
and 15.5 times faster than the 320k Power Particles.

Volume error. To manifest the ability of our algorithm in
handling uneven cell volume arrangement, Figure 16 shows
a hydrostatic test on a narrow tank of liquid with various
initial cell volumes over the domain. After 1000 timesteps,
the position and shape of the cells hold well with barely
perceptible volume error. This ability to accurately maintain
the cell volume ensures a stable and even density/mass
distribution in our method.

Adaptivity. Figure 17 offers statistics of particle numbers
over time in the colliding fountains scenario. With the
adaptivity turned off, the water is injected into the scene at a
constant rate hence the particle number grows linearly over
time up to 320k. When the adaptivity is enabled, the particle
number increases rapidly at first and slows down when
the water accumulates at the bottom. The particle number
reaches at most 165k particles, about half the number of the

full-resolution example, without having noticeable discrep-
ancy in surface details visually.

8 CONCLUSION AND FUTURE WORKS

By integrating Power Particles with the staggered discretiza-
tion as well as our newly proposed parallel power-diagram
construction, this paper has detailed a fully GPU-based
method for fluid simulation, staggered Power Particles,
which not only outperforms the previous method with
highly detailed surface effects but also yields a significant
performance gain in both the construction of power dia-
grams and the overall fluid simulation. By continuing to
equip it with the ability of adaptive particle sampling, our
method has become an efficient and flexible fluid simulator,
capable of producing vivid and photo-realistic fluid motion
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TABLE 1
The statistics of calculation overhead (in seconds) of each step. From the second column, the overhead of the power-diagram construction, the
pressure projection, the volume enforcement, the ghost-particle generation, the diffusion, other procedures (including advection and adaptive

sampling) as well as the total expense are displayed respectively.

scenario power diagram pressure volume ghost particle diffusion others total
dam break 18k SPP 0.062 0.038 0.038 0.001 0.004 0.000 0.145
dam break 147k SPP 0.415 0.065 0.066 0.004 0.011 0.000 0.563
dam break 147k PP 5.360 1.209 0.355 1.154 0.307 0.038 8.424

dam break 147k SPP (CPU) 5.352 0.819 0.365 1.145 0.307 0.035 8.025
fountains 320k SPP 2.002 0.083 0.077 0.007 0.021 0.000 2.19

fountains 165k adaptive SPP 1.098 0.056 0.052 0.005 0.017 0.005 1.233
fountains 320k PP 12.54 3.138 0.937 2.747 0.915 0.038 20.344

fountains 320k SPP (CPU) 12.44 1.948 0.969 2.680 1.008 0.038 19.089
sphere drop 52k SPP 0.119 0.039 0.038 0.001 0.004 0.000 0.203
sphere drop 418k SPP 0.966 0.098 0.091 0.009 0.021 0.000 1.187

sphere drop 216k adaptive SPP 0.247 0.064 0.060 0.006 0.012 0.009 0.400
sphere drop 418k PP 20.65 4.772 1.202 3.287 0.880 0.025 30.824

sphere drop 418k SPP (CPU) 20.56 2.440 1.253 3.227 0.865 0.026 28.379
double dam break 1M SPP 2.569 0.119 0.168 0.016 0.041 0.000 2.913

waves 576k SPP 1.545 0.109 0.105 0.009 0.034 0.000 1.804

Fig. 11. The rendered results of the sphere drop scenario. From top
to bottom: 52k staggered Power Particles, 418k staggered Power Par-
ticles, 216k adaptive staggered Power Particles, 418k Power Particles.
The adaptive particle sampling helps demonstrating similar visual de-
tails with merely half the particles. Additionally, the staggered scheme
manages to produce more abundant ricocheting droplets in contrast to
particle clusters with the original Power Particles. In this test, the 418k
staggered Power Particles and 216k adaptive staggered Power Particles
are respectively 25 and 76 times faster than the 418k Power Particles.

even with a relatively small number of particles. The exten-
sive experiments have validated both efficacy and adequacy
of our research, and the sharp comparisons with the previ-
ous method have also demonstrated the advantages of our
method computationally and visually.

Our present work still has much room for improvement.
For example, in the experiments of the colliding fountains
scenario, despite the fact that the adaptivity we incorporate
enhances the visual results significantly, the holes within the
water sheet have yet to be completely eliminated. A possible
solution for remedy is to make use of some geometrical
techniques such as anisotropic particle repositioning [7],
[51]. Another thing to improve would be to exploit the cut-
cell boundary handling by Brochu et al. [36] to better capture
the surface details. Besides, we are considering coupling
the Power Particles with the SPH method and grid-based

methods, aiming at taking the advantages of all in a single
simulation framework.
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Fig. 12. The rendered results of the double dam break scenario with 1 million staggered Power Particles. The left sequence is simulated with our
standard method and the right one with the pressure projection proposed in Sin et al. [35]. Noticeably, our method demonstrates less numerical
damping in this comparison.

Fig. 13. The rendered results of the waves scenario with 576k staggered
Power Particles.

0 200 400 600 800 1000
time step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Staggered Power Particles
Staggered Power Particles with viscosity
Power Particles
Power Particles with viscosity

Fig. 14. The rotating vortices scenario. Both the staggered Power Parti-
cles and the original Power Particles are tested with or without viscosity
(ν = 0.005), and the resulting energy profiles are comparable. Top:
the streamlines after 1000 timesteps. Bottom: the corresponding energy
statistics.
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Fig. 16. The 1000-th timestep of a hydrostatic test with various cell vol-
umes. The volume of each cell is shown on the left, and the percentage
error, with respect to the initial volume, is demonstrated on the right.
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